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Year 2 Achievements in Summary 
 

1. A comprehensive literature review has been conducted to understand the current 
status of on-board autonomous mission planning based iterative repair algorithms, 
application-specific processor techniques, and use of FPGAs as on-board 
computers in the space environment. 

2. An application-specific hardware architecture (pipelined processor) has been 
designed and developed for accelerating Iterative Repair algorithms.  Initial 
performance tests indicate a speed up of 800 times or more when the custom 
architecture is compared with a widely used embedded PowerPC processor as 
well as a commodity desktop microprocessor. 

3. A custom hardware compiler, termed the SATH (Simulated Annealing To 
Hardware) tool, has been developed to translate Iterative Repair C code into a 
custom pipelined hardware processor.  This tool consists of several stages: 

a. An intermediate representation generator, which translates GCC 
intermediate code into an optimized, custom intermediate representation 

b. Constant extractors, which parse the source code for important parameters 
c. Design Space Explorers, which derive efficient architectures of pipelined 

stages based upon source code complexity and FPGA resource constraints 
d. An architecture-to-VHDL translator, which reduces the final architecture 

specification to a set of synthesizable VHDL files. 
4. Publications: 

a. “A Coarse-grain Pipelined Architecture for Accelerating Iterative Repair-
Type Event Scheduling on SRAM-FPGAs”, Jonathan Phillips, Aravind 
Dasu. Submitted to the IEEE Transactions on VLSI, July 2007. 
Recommended for revision and re-submission within 21 days. It has been 
revised and resubmitted on Oct 9th.  

b. “Deriving FPGA based custom soft-core microprocessors for Mission 
Planning Algorithms”, A. Dasu, J.D. Phillips. Proceedings of the 21st 
annual AIAA Small Satellite conference. Aug. 2007. 

c. “An ASIP architecture framework to facilitate automated design space 
exploration and synthesis for Iterative Repair solvers”, A. Dasu, J.D. 
Phillips. Proceedings of the NASA Science and Technology Conference 
(NSTC) 2007. 

5. Student involvement: 3 graduate students (2 MS + 1 PhD). The PhD student will 
defend his dissertation in the Spring semester of 2008. 

6. Special session at the ERSA conference (engineering of reconfigurable systems 
and algorithms): I have been invited by the chair of ERSA conference (Dr. 
Toomas Plaks) to host a special session. I am focusing on a theme related to 
FPGAs for space based applications, algorithms and tools. Through this process I 
am trying to actively engage NASA groups from JPL, LaRC etc. to showcase 
their work at this conference. 

7. Planning for Year 3: We have started preliminary work on fault tolerance and 
mitigation circuit design techniques and evaluation against a commodity TMR 
tool from Xilinx. 
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Abstract 
 
Autonomous dynamic event scheduling, using Iterative Repair techniques such as those 
employed by remote agent software, is clearly becoming an essential component of space 
missions, as it enables spacecraft to adaptively schedule tasks in a dynamic, real-time 
environment. Through several missions such as Deep Space 1, TechSat-21 and 
Autonomous Sciencecraft Experiment it has been shown that there is great potential for 
significantly increasing scientific discovery with the help of AI-based autonomous on-
board software such as CASPER. It is expected that many future missions such as 
Distributed spacecraft, MISUS (multi-rover integrated science understanding system) for 
planetary exploration and integrated human-robotic explorations, etc. will use even more 
powerful and complex AI-based mission planning, scheduling and replanning 
software/algorithms. Event rescheduling is a compute-intensive process. Typical 
applications involve scheduling hundreds of events that share tens or hundreds of 
resources.  Iterative Repair problems are generally solved using combinatorial search 
heuristic methods, such as simulated annealing, genetic algorithms, or stochastic beam 
search.  These heuristics are computationally intensive since they operate by gradually 
improving an initial solution over hundreds or thousands of iterations. In the past, the 
constraints of traditional computing platforms for spacecraft have precluded the 
realization of fast and efficient hardware to accelerate such algorithms. The recently 
proven viability of using SRAM-based FPGAs in space, however, provides an 
opportunity to design very low power, efficient, and fault-mitigating circuits customized 
to accelerate this class of autonomous-scheduling algorithms by one or more orders of 
magnitude.  However, the design of such on-chip architectures is quite complicated and 
presently requires expertise in VLSI design, which makes using FPGAs user-unfriendly 
and complicated for software oriented mission engineers and scientists. Therefore, 
through this project we have developed a custom compiler that compiles ANSI-C code of 
a wide class of Iterative Repair algorithms into highly optimized low level circuits that 
can be mapped onto commodity FPGAs. As part of this compiler tool development, we 
first designed and implemented a template VLSI architecture for a reasonably complex 
mission-scheduling problem. We then compared the performance of this circuit (on an 
FPGA) to that of a widely used embedded PowerPC microprocessor as well as a 
commodity desktop microprocessor. Results showed a speedup of two orders and one 
order of magnitude respectively. We then followed up with the design and development 
of a new silicon-compiler tool flow that uses the template architecture in conjunction 
with a set of new design space exploration algorithms to deliver fully synthesizable 
VHDL code that can be readily mapped onto commodity Xilinx FPGAs. 
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1. INTRODUCTION 

Field Programmable Gate Arrays (FPGAs) are becoming increasingly popular as a 
platform of choice for spacecraft computer systems.  FPGA-based designs are much 
cheaper and have a shorter development cycle than traditional Application-Specific 
Integrated Circuits (ASICs), and provide more computing power and efficiency than 
standard microprocessors.  A sub-set of current and planned NASA missions that utilize 
FPGA technology include MARTE (Mars Astrobiology Research and Technology 
Experiment) [1] and the Discovery and New Frontier programs [2]. 
 
Simulated annealing is a widely used heuristic algorithm to solve challenging 
optimization problems. While it has been used extensively for static time design 
optimization, there is an increasing need to deploy such solvers in real time embedded 
systems. For example, NASA uses the CASPER and ASPEN tools [3] to design code for 
Iterative Repair, a simulated annealing algorithm that derives complicated event 
schedules on-board spacecraft. The complexity of these algorithms can be daunting for 
space based computers, which are significantly slower than state of the art 
microprocessors. 
 
Combining FPGAs with simulated annealing algorithms would greatly improve system 
performance.  Unfortunately, hardware architecture design targeting FPGAs is much 
harder and more time consuming than software design and is daunting for software 
engineers without expertise in VLSI design.  
To mitigate this design flow barrier, a methodology and tool flow for the automatic 
derivation, from source C code of simulated annealing scheduling algorithms, of FPGA-
based application-specific processors is presented.  This tool flow is termed SATH 
(Simulated Annealing to Hardware). The rest of this document is organized as follows: A 
history of related works is presented with critical analysis in chapter 2.  Chapter 3 
presents the architecture template. Chapter 4 presents two new algorithms/techniques for 
resource estimation and scheduling. Chapter 5 describes the architecture derivation tool 
through the use of a template. Finally in Chapter 6 we present some results obtained 
accompanied by an analysis. 
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2. BACKGROUND 

2.1 Significance 

This project proposes and develops a methodology for deriving application specific 
processors for event scheduling algorithms in the space environment from high-level 
source code.  This project embraces concepts from the fields of compilers, custom 
processor design, and C-to-gates translators.  Deriving hardware from software is an 
inherently difficult procedure.  Several attempts with varying levels of success have been 
performed over the past 20 years.  Most products result in supporting only a restricted 
subset of C with additional compiler directives to give the tool hints on how to derive 
hardware. 
The aim of this research is to create an application-specific C-to-architecture tool flow 
that will enable NASA mission planning engineers to efficiently utilize FPGAs as 
processing platforms for on-board mission planning and scheduling operations. 
  
2.2 Field Programmable Gate Arrays 

An FPGA is a silicon device that is in some ways comparable to an Application-Specific 
Integrated Circuit (ASIC).  The vast majority of large-scale integrated devices used today 
in industry are ASICs, meaning that they are permanently configured for a specific 
application.  An FPGA, on the other hand, consists of several static random access 
memory (SRAM) based reprogrammable logic blocks along with reprogrammable inter-
block connections, allowing a single FPGA to be reprogrammed and used in a variety of 
applications.  While FPGAs have the benefit of being dynamically reconfigurable, they 
are also larger, slower, and more power-hungry than ASICs.  As FPGA technology 
continues to improve, they will command an increasing share of the integrated circuit 
market.  Much research is currently being done on FPGA methods and applications. 
 
2.3 Previous Work 

Deriving architectures from high-level source code is a task that must borrow concepts 
and methods from several distinct research areas.  For example, several efforts have been 
made in the past 20 years, with varying levels of success, to create tools for the 
translation of C source code into hardware specifications, with the aim of improving 
performance over that obtained on general-purpose machines.  Similar efforts have been 
made in the field of parallel compilers, in which sequential high-level code is partitioned 
across several processing units to improve program performance.  Other related areas 
include the development of Application-Specific Instruction Processors (ASIPs) and 
designing radiation-hardened FPGAs for use in the space environment. 
 
2.3.1 C to Hardware 

Converting C code into a hardware specification has been a much-researched area over 
the past two decades.  Several tools have been produced over this time period, each of 
which targets specific areas of the software to hardware conversion.  In [4] a 
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comprehensive summary of the different projects is provided.  A summary of each of 
these tools is provided here. 
 
The first attempt at a C to Gates tool was Cones [5], which was developed in 1988 at 
AT&T Bell Laboratories.  Cones works on a subset of C with the introduction of some 
additional directives to facilitate translation to hardware.  Cones translates C functions 
into combinatorial blocks, based upon the premise that a function consists of several 
inputs that influence one output.  Arithmetic and logic statements are reduced through the 
use of Karnaugh Maps and similar techniques.  Cones also unrolls simple loops.  Cones 
cannot handle pointers, nested loops, recursive function calls, or dynamic memory 
allocation.  Additional syntax is introduced to specify input and output data for each C 
function. 
 
HardwareC [6] was developed at Stanford University in 1990.  It is based upon the same 
syntax as conventional C, but includes custom hardware semantics.  HardwareC additions 
include both procedural and declarative semantics, which means a design can consist of 
either sequences of operations or as a structure of interconnecting components.  
HardwareC models hardware as concurrent processes with inter-process communication 
facilities.  The level of parallelism can be specified by the programmer to be sequential, 
data-parallel, or parallel for a given design.  Lastly, HardwareC supports constraint 
specifications, where time and resource constraints can be imposed. 
 
Transmogrifier C [7] from the University of Toronto was released in 1995.  It is another 
variation on a subset of the C programming language.  Integer addition and subtraction 
are supported.  Compiler directives are used to specify data lengths.  If statements, while 
loops, and function calls are also supported.  The compiler does not support 
multiplication, division, pointers, arrays, structures, recursion, or floating-point 
arithmetic. 
 
In 2002 SystemC [8] was introduced.  SystemC is actually a C++ library.  Classes are 
defined for simple Verilog constructs such as combinatorial and sequential modules.  
Simple, user-specified concurrency is allowed through the use of threads.  SystemC is 
primarily a simulation language, although a restricted subset can be synthesized.  
Similarly, Ocapi [9] and PDL++ [10] are also built on C++.  Proprietary classes are 
provided for creating finite state machines and data paths.  The C++ code is translated to 
VHDL or Verilog for synthesis and design implementation. 
 
One of the most successful ventures at translating C code to hardware was C2Verilog 
[11], which was introduced in 1998.  C2Verilog supports standard ANSI C code.  The 
programmer is not required to provide any hints or directives on concurrency or 
partitioning.  The entire C language is supported, including pointers, recursion, floating-
point data types, arrays, structures, etc.  C2Verilog works by performing global analysis 
on a program and creating always blocks and concurrent statements.  Functions are 
represented using state machines.  Pointers and dynamic memory allocation are managed 
by creating a dedicated RAM of sufficient size and sufficient IO ports to allow for 
efficient access. 
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Cyber [12], released by NEC in 1999, is yet another subset of the C programming 
language.  The C subset is once again augmented with bit-length and input/output port 
declarations, as well as data-transfer types such as registers, terminals, latches, and tri-
state buffers.  The programmer must also specify code sections that are synchronous, 
asynchronous, or concurrent.  Typically, difficult constructs such as recursion, dynamic 
memory allocation, and pointers are not supported.  This augmented subset of C is termed 
BDL (Behavior Description Language).  Cyber is actually a behavioral synthesis system 
that takes behavioral code in BDL or VHDL and produces synthesizable register transfer 
logic. 
 
Handel-C [13], developed by Celoxica, is a widely-used C variant.  Handel-C is built 
upon the CSP [14] algebra for modeling process concurrency.  Data widths can be 
specified by the programmer.  The programmer can designate code sections as being 
concurrent.  Input and output ports are introduced to allow an interface with the outside 
world.  Synchronous message massing between processes is available.  A variation on the 
basic C switch statement generates hardware multiplexers.  Every instruction in Handel-C 
takes a single clock cycle.  Bach C [15] is almost identical to Handel-C, providing the 
same explicit concurrency and message-passing capabilities.  Pointers are not handled in 
either Handel-C or Bach C. 
 
Another C variant is SpecC [16].  SpecC provides a set of 33 key words as additions to 
the ANSI C language that specify how the compiler should create finite state machines, 
concurrency, pipelining, etc.  Once again, complicated features such as recursion and 
pointers are not supported. 
 
The Trident C compiler [17] is a tool targeted specifically at floating-point operations.  
Concurrency and throughput are maximized through the use of pipelined floating-point 
units on an FPGA.  Yet again, features such as dynamic memory allocation and pointer 
manipulations are not supported. 
 
Another work worthy of mention is SPARK [18].  SPARK translates a subset of ANSI C 
to register-transfer level VHDL.  Much work is done on the analysis of loops and 
conditional branches.  Speculative code execution is also employed, meaning that 
computations performed within a conditional block are commenced before it has been 
determined that the block will be entered.  Compile-time analysis is performed to 
determine what the best instructions are for speculative execution.  The SPARK compiler 
cannot handle pointers or dynamic memory allocations. 
 
The final system of note is CASH [19].  CASH, or Compiler for Application-Specific 
Hardware, differs from all previously mentioned systems because it generates 
asynchronous hardware.  Starting from a pure ANSI-C code, CASH identifies instruction 
level parallelism and generates asynchronous data-flow circuits that support these parallel 
constructs. 
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To summarize this discussion on work in the area of C-to-architecture translation, 
compiling pure C code into gates is a difficult task.  Common areas of difficulty include 
recursive function calls, dynamic memory allocation, pointer manipulation, support for 
all C data types (including floating point representations), and detection of concurrency.  
In [20] a detailed discussion of the shortcomings of using C to derive hardware is 
presented.  Specifically, the concepts of concurrency, timing, data types, and 
communication can not be specified using standard C.  These issues are generally 
resolved by either reducing the input language to a restricted subset of C, or by 
introducing compiler directives or other keywords or labels to indicate how the compiler 
should proceed.  The ideal situation is to start with fully compliant ANSI C source code, 
thus allowing for the translation of existing code directly into hardware without 
modification.  Of all the projects discussed, only C2Verilog claims to support the entire 
ANSI C standard with no restrictions or additions.  This means that the C2Verilog 
compiler is responsible for all extraction of parallelism.  While the C2Verilog compiler 
can identify instruction and loop-level parallelism, it cannot extract process-level 
parallelism.  The ability of the compiler to recognize parallelism is directly dependent 
upon the syntax of the source code – source codes written with concurrency in mind 
generally result in better hardware architectures than those that are written for 
conventional sequential machines.  In addition, current C-to-hardware tools fail to take 
into account several important hardware design factors, including available FPGA area, 
power consumption, execution speed, and fault tolerance, all of which are critical to 
engineering in the space environment. 
 
2.3.2 Parallel Compilers 

Parallel compilers are used to partition high-level sequential code across multiple 
processors.  The high-level programming paradigm that has been followed for decades is 
based upon sequential code executing on a sequential processor.  Retargeting this 
sequential code for exploitation by parallel processors in an efficient manner has been a 
difficult task.  Parallelism can be extracted at multiple levels.  Instruction level 
parallelism, basic-block level parallelism, loop level parallelism, and function level 
parallelism are some examples.  Different compilers take different approaches in the 
manner in which the parallelization occurs. 
 
Several compilers have been developed which extract parallelism at either a fine-grained 
or a coarse-grained level.  For example, ICU-PFC [21] is a FORTRAN compiler that 
targets loop-level parallelism.  Control flow analysis is performed on the source code to 
derive loop structures.  Data flow analysis is performed to determine the presence or 
absence of inter-loop dependencies.  FORTRAN augmented with concurrent constructs is 
the result.  As FORTRAN is generally used for scientific and other compute-intensive 
applications, performing loop-level parallelization analysis is a reasonable method.  
There is a potential for significant data dependencies to exist between loops, however, 
which would significantly restrict the level of improvement.  Performing additional 
analysis at either instruction level, basic-block level, or function level may alleviate some 
of these restrictions. 
 



 

 10 

Another compiler worthy of mention is OSCAR [22].  OSCAR is a multigrain 
FORTRAN compiler that attempts to embrace all levels of parallelism from instruction 
level to program level.  Extensive control- and data-flow analysis is performed to 
determine which levels of parallelism exploitation will yield maximum improvement.  
Efficient FORTRAN code is produced that generally performs between two and four 
times better than code produced by less-rigorous compilers. 
 
Maybe the most famous of parallel compilers is SUIF [23], developed at Stanford 
University.  SUIF is designed to extract coarse-grained parallelism, specifically at the 
function, loop, and independent memory access levels.  The goal of extracting coarse-
level parallelism, as opposed to instruction-level parallelism, is to provide large pieces of 
code that can be executed on different processors with minimal inter-processor 
communication or synchronization.  The main challenge faced by SUIF and similar 
compilers is in predicting memory access patterns, especially when arrays are accessed 
with run-time-generated indices.  SUIF organizes memory storage to exploit areas of 
potential parallelization.  Work continues on SUIF to further refine its parallelism 
extraction capabilities. 
 
A slightly different approach to parallel compilation is taken by the RAW architecture 
[24].  RAW consists of a set of 16 tiled processors connected via a high-bandwidth 
network, all contained in a single chip.  The RAW-specific compiler attempts to 
efficiently map applications to processing tiles, extracting parallelism at both the 
instruction and thread levels.  In order to achieve maximum system throughput, however, 
it is conceded that hand optimization is needed. 
 
These types of compilers are generally designed for specific target architectures.  The 
properties of the architecture drive the optimizations performed by the compiler.  
Programs with minimal control flow work best for parallelization, as less synchronization 
is needed.  Developing an efficient parallel compiler front end that can be mapped to 
several target processors is a difficult task. 
 
2.3.3 Design Space Exploration 

Design space exploration in the context of FPGA-based architectures is a powerful tool.  
Exploring a design space is, in essence, searching the combinatorial space of all possible 
hardware architectures that can support a given function.  The goal is to identify the 
architecture that yields the best tradeoff between conflicting goals, such as FPGA area 
usage versus system throughput.  The design space is generally very large, thus 
demanding an intelligent search method to arrive at a solution within a reasonable 
amount of time.  Common techniques include integer linear programming, Markov 
decision processes, Pareto optimality, and dynamic programming, well as heuristic 
searches such as simulated annealing, genetic algorithms, tabu search, and design-space 
pruning.  An FPGA design space can be searched at many levels, from the low-level 
specification of individual look-up tables to high-level complex modules.  A sampling of 
some of the different techniques and applications for DSE are discussed in this section. 
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An overview of the different types of processors that are typically considered in a design 
space search is provided in [25].  Reduced Instruction Set (RISC), Complex Instruction 
Set (CISC), VLIW (Very Long Instruction Word), dataflow, tagged-token, and pipelined 
architectures are all commonly utilized.  A design space explorer is generally restricted to 
one flavor of processor in order to put an upper bound on the time needed to search the 
design space.  Trying to search across all possible architectures is considered to be an 
intractable problem. 
 
Generally used heuristics for design space exploration include the comparable techniques 
of simulated annealing, genetic algorithms, and tabu search.  A study has been performed 
which compares the three methods, arriving at the conclusion that tabu search may be 
better in some instances [26].  In [27], a good description of performing design space 
exploration for a reconfigurable processor is described.  Important elements to be 
considered in the design space include allocation of computational, control, and memory 
resources, along with the scheduling of operations onto these resources.  Exploration can 
occur in both parallelization (spatial optimization) and pipelining (temporal 
optimization).  Simulated annealing is employed as the heuristic search method.  Over 
thousands of iterations of the simulated annealing algorithm, the throughput of the 
processor gradually improves. 
 
Additional tools that use simulated annealing coupled with the concept of Pareto-
optimality are presented in [28] and [29].  A solution is said to be Pareto-optimal if there 
does not exist a solution that betters one parameter without worsening one or more of the 
others.  These Pareto-optimal solutions can be used to guide the search of the simulated 
annealing algorithm.  While a Pareto-optimal solution may not be a globally optimal 
solution, it is a good candidate for an area in which to focus the search.  This technique 
was applied to a MIPS processor platform with adjustable data cache, instruction cache, 
and main memory sizes.  Typical benchmarks in signal processing and image conversion 
were used to test the system. 
 
In [30], a system has been developed to explore the space of heterogeneous micro-
architecture processors, 20 to 50 of which may reside on a single FPGA.  The search tool 
uses Integer Linear Programming as the search method, where the goal is to maximize 
throughput.  Integer Linear Programming is a method for solving a system of linear 
inequalities.  The linear constraints define a polyhedron, whose edges can be traversed 
until the optimal solution is found.  Integer Linear Programming is an NP-complete 
algorithm that is often coupled with branch-and-bound techniques to reduce the compute 
time.  The tool was tested by implementing an FPGA-based IPv4 packet forwarder that 
can outperform a hand-tuned design. 
 
Another Integer Linear Programming DSE is presented in [31].  ILP is used to determine 
the most profitable extensions that should be added to a base processor for various data 
encryption and decryption techniques for high-bandwidth data.  Extensions can include 
additional arithmetic units or combinations of units, such as a multiply-accumulate unit.  
The processor is targeted for implementation on an ASIC and the typical constrained 
optimization problem of throughput versus area utilization is solved. 



 

 12 

 
The inventors of SUIF have also made significant inroads in the area of FPGA design-
space exploration, specifically targeting source code that consists of multi-dimensional 
array accesses [32].  Concepts from SUIF have been combined with ideas from C-to-
architecture tools to develop a method for exploring the time/space tradeoff in a custom 
FPGA architecture.  The method involves the use of hardware synthesis tools from Xilinx 
or Altera as a mechanism for providing timing and area estimates for a potential design.  
The design is revised over many iterations of trial-and-error until an acceptable (but not 
necessarily optimal) architecture is discovered. 
 
One technique for decreasing the time needed to find an architecture in the design space 
is a technique known as design space pruning [33].  Essentially, this method provides 
early estimates of area/latency tradeoffs to the search engine, immediately eliminating 
any solutions that are estimated to be poor performers by bounding the value of 
acceptable solutions.  The searcher can then focus on optimizing more promising 
solutions.  This technique can be successfully employed in combination with a standard 
exhaustive search, or with one of the other heuristic searches.  Estimations are performed 
by modeling architecture efficiency based upon number of data-path operators, data bit-
widths, register file size, number of control units, control signal complexity, total 
memory size, and number of read and write ports needed to support concurrent memory 
accesses.  The resultant architecture would generally be a VLIW-style processor. 
 
Another technique for DSE is to model the search problem as a Markov Decision Process 
(MDP) [34].  An MDP is a flavor of reinforcement learning in which a program traverses 
design states in a decision tree probabilistically according to values that have been 
learned over time.  In other words, an MDP is initially a poor-performing random search.  
However, over thousands of trials, the MDP can be “trained” to produce high-quality 
architectures.  This algorithm has been applied successfully to derive custom VLIW 
processors for various image and video compression algorithms. 
 
When the design space consists of a traditional load/store processor that needs to be 
streamlined for a specific application, a technique such as CUSTARD [35] can be used to 
design an efficient multi-threaded processor.  CUSTARD begins with a traditional MIPS 
integer pipeline processor.  The processor is customized in three ways.  First, unneeded 
instructions are removed from the instruction set.  Second, additional pipelines are 
introduced to maximize parallelism.  Each pipeline need not be identical; rather, each can 
be customized to support only the needed instructions.  Third, the simple instructions 
supported by the MIPS RISC architecture can be combined to form more complex 
instructions (combining multiplication with addition to form a multiply-accumulate 
instruction is one common example).  The cost of introducing complex instructions must 
be evaluated carefully, as they sacrifice versatility for speed.  A cycle-accurate simulator 
is used to measure the performance of the candidate processors. 
 
Use of a genetic algorithm is another popular method for design space exploration.  For 
example, [36] details the use of a genetic algorithm for deriving a custom architecture for 
a digital camera.  The processing platform consists of a PowerPC core, data cache, 
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instruction cache, memory, and buses.  Different architectures are derived depending 
upon the file format and photo resolution. 
 
In [37] an improvement to the basic genetic algorithm is proposed.  A genetic algorithm 
maintains a population of current solutions at any given time during execution.  A 
technique called “fuzzy clustering” is introduced which combines solutions into clusters 
or groups based upon score.  The GA can then discard lower-scoring clusters and focus 
on the more-promising ones.  This technique is once again applied to deriving VLIW 
architectures for video processing. 
 
Finally, a project is presented in [38] in which an iterative improvement algorithm (based 
upon simulated annealing) is utilized to design processors for noise cancellation 
algorithms.  The resulting processor is a VLIW processor with an arbitrary mix of 
multipliers, adders, and multiply-and-accumulate units. 
 
In summary, DSE is a powerful tool.  Many search strategies exist and many applications 
can be targeted.  The tradeoffs between a heuristic approach such as simulated annealing 
(faster results) and an exhaustive approach such as integer linear programming (correct 
results) must be weighed carefully.  DSE can take place at different design levels.  
Discrete components such as processors and memories can be combined in different 
ways, or the internals of the processor itself can be customized. 
 
2.3.4 CASPER and ASPEN 

ASPEN (Automated Scheduling and Planning Environment) [39] and CASPER 
(Continuous Activity Scheduling, Planning, Execution, and Replanning) [3] are tools that 
were developed at the Jet Propulsion Lab for use in modeling and implementing space-
based mission planning and scheduling algorithms.  ASPEN consists of a GUI-based 
design environment that supports a C-like programming language for modeling events 
that must be scheduled.  CASPER is a stripped-down version of ASPEN that was 
designed to fly on the satellite, performing dynamic planning and continuous 
rescheduling of mission-critical events in real time.  CASPER continuously runs an 
Iterative Repair algorithm to constantly improve and update the schedule.  In traditional 
planning methods, events are labeled as either “in view” or “beyond the horizon”.  Only 
those events that fall within the event horizon are planned.  Continuous planning takes a 
different approach.  Rather than utilizing discrete event horizons, all tasks to be 
scheduled are available to the planner at all times.  The tasks are divided into short-, 
medium-, and long-range types, where short-range tasks are the most detailed in terms of 
specific start-times, exact event durations, resource utilizations, etc., while long-range 
task representations are very general, rough estimates of timing and resources needs.  
This organization is shown in fig. 1. 
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Fig. 1:  Continuous planning partitions. 

 
As time progresses, tasks pass from one planning frame to another, depending upon time 
left until execution.  The planner runs constantly to improve the schedule.  The Iterative 
Repair algorithm runs as detailed in fig. 2. 
 

 
Fig. 2:  Iterative Repair flowchart. 

 
A first-guess solution is generated initially which satisfies timing constraints while 
ignoring resource constraints.  This solution is then gradually improved, or repaired, over 
many iterations until an optimal (or close-to-optimal) schedule has been found.  These 
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improvements are made by either reassigning an event to an unused resource or moving 
the event to a different time slot. 
 
2.3.5 Heuristic Search Techniques 

Iterative Repair is, by nature, a greedy algorithm.  Schedules can be improved to a point, 
but the algorithm can become trapped in a local optimum in the search space.  One or 
more inferior solutions may need to be used as stepping stones to arrive at the global 
optimum.  This technique of sacrificing local optimally for the global good is employed 
by Simulated Annealing.  Simulated Annealing is a method for performing combinatorial 
optimization on a large search space where an exhaustive search is not tractable.  
Simulated Annealing is based upon the metallurgic phenomenon of annealing, in which a 
metal is heated to an extremely high temperature and then allowed to cool slowly, 
resulting in a (near) minimal energy configuration of the crystalline structure.  Simulated 
Annealing takes an initial solution  and minimizes the “energy” of the solution through 
successive steps, in each of which a slightly different solution is compared to the current 
solution.  In order to avoid becoming trapped in local optima, solutions with higher 
energies are accepted probabilistically, based upon the current temperature of the system.  
The temperature is gradually lowered over many iterations until an optimal solution is 
found. 
 
As discussed above, the Iterative Repair algorithm for event scheduling utilizes the 
Simulated Annealing heuristic to effectively search for optimal solutions.  Other common 
heuristic searches which yield similar results and which could be used in place of 
Simulated Annealing include Genetic Algorithms [40] and Stochastic Beam Search.  A 
summary of all three methods is provided in [41].  Pseudocode for the three algorithms is 
presented below in figs. 3-5. 
 

 
Fig.  3:  The Simulated Annealing algorithm. 
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Fig. 4:  The Stochastic Beam Search. 

 

 
Fig. 5:  The Genetic Algorithm. 

 
All three algorithms operate on variations of the same general premise:  gradually 
improve a solution (or set of solutions) over time until a solution of sufficient quality is 
discovered.  Simulated Annealing (SA) operates on a single solution, while Stochastic 
Beam Search (SBS) and Genetic Algorithm (GA) maintain a pool, or population, of 
solutions (solutions are also termed chromosomes in GA).  All three algorithms utilize 
similar subroutines for evaluating solutions and generating new solutions, although the 
crossover and mutation operators used in GA are a bit more complicated.  All three 
algorithms also depend heavily on random number generation and probabilities.  GA and 
SBS differ from SA in the technique used for avoiding entrapment in local optima.  In 
SA, suboptimal moves are accepted as long as the temperature is sufficiently high and the 
value of the new solution is reasonably good.  GA and SBS solve the problem by 
maintaining a pool of current solutions such that it is statistically impossible for all 
solutions to fall in an area around the same local optima. 
 
In theory, implementing combinatorial search algorithms in hardware could significantly 
speed-up the search process.  Large amounts of parallelism and pipelining can be 
extracted from SA, GA and SBS, since deriving a new generation is largely only a 
function of the previous generation.  Hardware-based GA implementations abound in the 
literature.  Some recent examples of FPGA-based GAs are discussed here. 
 
A GA has been implemented on an FPGA for the purpose of blind signal separation [42].  
Function-level pipelining has been implemented.  The high-level flow chart, which is 
almost identical for all hardware GAs surveyed, is shown in fig. 6.  This system was 
implemented on a Xilinx Virtex FPGA, using a chromosome length of 64 bits and a 
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population size of 80 chromosomes.  As long as the chromosome length is kept 
reasonably small, this type of technique in which entire chromosomes are passed between 
pipelined modules works well. 

 
Fig. 6:  Hardware implementation of a Genetic Algorithm with short chromosomes [42]. 

GAs are also commonly used for filter design.  In [43], a GA for grey-scale filter design 
has been implemented on a Xilinx Spartan II FPGA.  A pipelined approach similar to the 
one shown in fig. 6 is once again taken.  Chromosomes are 16 bits in length and a 
generation consists of 10 chromosomes.  Another example is using a GA to perform 
function interpolation [44].  In this case, chromosomes are 24 bits in length or less.  A 
system for maximizing algebraic expressions has been developed with 5-bit 
chromosomes [45].  Three different sets of libraries and design algorithms written in both 
Verilog and VHDL for the implementation of various types of GAs with relatively small 
chromosome lengths have also been developed  [46-48]. 
 
The examples discussed above are very simple, as the chromosome length in all cases is 
so small that the entire chromosome can be passed between pipelined modules 
simultaneously.  Most real-world problems, however, are complex enough that a 
chromosome can be hundreds of bytes in length.  The simple pipelined implementations 
discussed above clearly cannot handle this complexity, as 100-byte wide busses are not 
feasible for implementation on an FPGA. One method for resolving this problem is to 
split the chromosome into manageable chunks and transfer one chunk of data on each 
clock cycle [49].  This allows a modified version of the simple pipelined architecture to 
be created.  Obviously, as the ratio between chromosome length and bus width grows, the 
time used in data transfers also increases. 
 
Traveling Salesperson is the classic combinatorial search problem, the goal being to find 
shortest path for visiting every node on a graph exactly once.  A version of the problem 
has been solved using GA on a Xilinx Virtex-E FPGA [50].  Rather than coding 
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modularly in VHDL or Verilog, the implementation was performed using Handel-C.  
Population size is 200 chromosomes, with the chromosome size being variable.  Explicit 
pipelining is not realized in this design, as Handel-C is a behavioral language rather than 
a structural language.  Any parallelization is specified by the programmer and interpreted 
by the Handel-C compiler. 
 
An example of performing SBS in hardware was used for speech recognition algorithms 
[51].  Chromosome widths in this example are once again limited to a few bits.  Because 
of the inherently serial nature of the SA algorithm, it is not generally considered an 
interesting problem for parallelization or hardware implementation. 
 
The chromosomes needed for scheduling are much larger than what can be transmitted on 
a bus in one shot.  For example, take a system in which 100 tasks need to be scheduled 
within a 24 hour period.  If the tasks need to be scheduled with a resolution of 1 minute, 
the chromosome would consist of 100 11-bit numbers.  An 1100-bit chromosome is much 
too large to transfer as a single chunk.  Novel architectures must be developed to 
accelerate this algorithm. 
 
A hardware implementation of the FPGA place-and-route algorithm using Simulated 
Annealing has been done [52].  The place-and route algorithm searches for a layout of a 
circuit on an FPGA, including the use of both logic blocks and routing resources, that 
minimizes resource utilization while maximizing circuit performance.  The architecture 
in this case is based upon systolic arrays, rather than the pipelined structure advocated in 
this paper.  Comparable speedups approaching three orders of magnitude were found 
using this architecture. 

 
Figure 7:  Simulated annealing pseudocode.  An optimal solution is derived by repeatedly executing 

the five steps. 
 
As Simulated Annealing is the heuristic search employed by Iterative Repair, a detailed 
description of the algorithm is now provided.  As described in fig. 3 and revised in fig. 7, 
an initial solution is generated, usually randomly, and evaluated.  This initial solution is 
designated as the current solution until a new one is accepted.  The main loop is now 
entered, which generally loops several thousand times.  On each iteration, the current 
solution is copied verbatim to a second buffer, where it is designated as the next solution.  
This next solution is then altered slightly and evaluated.  The score of this new solution is 
then compared against the score of the current solution.  The crux of the algorithm is 
determining whether to accept the next solution as the new current solution or discard it 
in favor of the keeping the resident current solution.  This decision is made according to 
(1). 
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p = eΔE/T, ΔE = Snext - Scurrent        (1) 
 
In this equation, Snext and Scurrent are the scores of the current and next solutions, 
respectively, and T represents temperature.  The probability p is a function of both the 
temperature and the difference between the score of the current solution and the score of 
the new solution (ΔE).  A random number is generated and compared to p to determine 
whether a solution should be accepted.  When the temperature is high, suboptimal 
solutions are more-likely to be accepted.  This feature allows the algorithm to escape 
from local minima as it searches the solution space and zero in on the true optimal 
solution.  The last step in the loop decreases the temperature according to a pre-
determined schedule.  A typical method is to geometrically decrease the temperature by 
multiplication by a cooling rate, which is generally a number such as 0.99 or 0.999.  The 
closer the cooling rate is to 1.0, the more times the loop will execute.  This results in 
longer program execution, but also improves the probability of finding the best solution.  
Cooling too fast reintroduces the local-optima entrapment problem to the system. 
 
Fig. 8 shows how simulated annealing can be applied to an iterative repair problem.  In 
this case, a simple example consisting of ten events is presented.  These events are 
numbered 0 through 9, and can be treated as indices to a solution array in computer 
memory.  At any point in time, two solutions are maintained:  the current solution and the 
potential next solution.  From fig. 3, the first step in the loop is to copy the current 
solution into the next solution buffer.  Once this is done, the next solution must be altered 
in some way.  Fig. 8 depicts a simple value swap, where two events are selected at 
random and the respective start times are swapped. 
 
 

 
Figure 8:  An example of iterative repair using simulated annealing.  A solution is copied, altered, 

evaluated, compared against the current solution, and accepted conditionally.  This process is 
repeated thousands of times to arrive at the optimal solution. 
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This new solution must then be evaluated to determine how it compares with the current 
solution.  Factors to take into consideration when computing the value of a schedule 
could include effective resource utilization, dependency graph violations (when a child 
event is scheduled before a parent event), and overall length of the schedule.  Once the 
new schedule’s value has been determined, equation (1) is applied to determine whether 
or not it should replace the current solution. If the next score is better than the current 
score, it replaces the current score unconditionally.  If it is worse, it is accepted with the 
computed probability, depending on both the score of the solution and the temperature.  
The temperature is then updated as described previously.  This process is repeated until 
the temperature falls below a predetermined threshold, at which time the best schedule 
found is returned by the system. 
 
2.3.6 Application-Specific Instruction Processors 

Application-Specific Instruction Processors (ASIPs) are a relatively new method of 
hardware architecture design.  When the target application is known at hardware design 
time, the processing platform can be customized to execute the application in an efficient 
manner, rather than using generic, general-purpose processors.  In [53] some of the 
benefits of ASIPs over standard processors, including execution time and power 
consumption are explained.  The ASIP approach is very compatible with FPGA 
technology.  A single FPGA can be repeatedly reconfigured to implement an ASIP for a 
variety of applications.  As FPGA technology improves in terms of clock speeds and 
power consumption, ASIPs gain popularity as an alternative to traditional ASIC design 
methodologies [54].  In this section, techniques for ASIP design, implementation, and 
optimization are discussed. 
 
One technique for implementing an ASIP is to combine a conventional microprocessor 
with a reconfigurable module [55].  For a specific application, the reconfigurable module 
is programmed to perform one or more complex, application-specific instructions more 
efficiently than possible in the microprocessor itself.  In other words, an FPGA serves as 
a coprocessor to accelerate computations.  Determining which sets of instructions should 
be combined and placed on the FPGA is a challenging task.  A smaller hardware module 
that can be used multiple times may prove more efficient than a larger module that can 
only be used once or twice. 
 
Another method for ASIP implementation is to design a custom Very Long Instruction 
Word (VLIW) processor.  A VLIW processor consists of multiple computational blocks 
that are coupled with a wide instruction word, allowing for multiple instructions to be 
issued simultaneously.  A VLIW processor is an excellent choice for exploiting 
instruction-level parallelism.  In [56], a VLIW-based technique termed a Wide Counter-
flow Pipeline is proposed.  The architecture consists of a pipelined VLIW processor, with 
instruction width and computational blocks dictated by the application, coupled with a 
counter-flow pipeline that brings results back to the register file.  A VLIW-style 
processor efficiently manages compute-intensive code with minimal control flow.  Little 
instruction-level parallelism can be extracted from branch-heavy code. 
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In [57] the steps necessary to derive an efficient ASIP are identified.  First, application 
behavior must be analyzed utilizing specialized compilers [58].  Second, a base 
architecture must be selected.  Possible architectures include VLIWs, specialized co-
processors, data-flow processors, etc.  Once the architecture has been selected, optimal 
speedups must be determined, such as VLIW widths, co-processor latencies, register file 
[59] and memory sizes [60], etc.  Exploring this design space is a combinatorial search 
problem, as there are generally thousands or millions of combinations of possible 
architecture details that need to be explored.  Examples of heuristic techniques for 
searching this design space for a VLIW processor are detailed in [61] and [62].  Finally, a 
tool must be developed to both generate a Hardware Description Language (HDL) 
representation of the architecture and then map the source code onto the novel processor.  
Schliebusch et al. [63] describe a method for implementing this tool by introducing a 
hardware intermediate format. 
 
2.3.7 Using FPGAs in the Space Enviroment 

The space environment is not electronics-friendly.  The sun is constantly spewing large 
amounts of fast-traveling, highly-charged particles into space in a phenomenon known as 
the solar wind [64].  These high-energy particles can affect electronic circuits in a variety 
of ways, causing single-event upsets (SEUs) and single-event latchups (SELs).  SEUs 
occur when a transistor is energized by a high-energy particle, resulting in a bit flip.  This 
phenomenon can occur in any part of a circuit, resulting in temporary data corruption, 
code corruption, or, in the case of an FPGA, even hardware architecture corruption. A 
SEL is similar to a SEU, occurring when a high-energy particle permanently damages a 
transistor rendering it unusable.  Techniques have been developed for implementing 
fault-tolerant circuits on FPGAs.  In [65] a summary is provided of current techniques for 
implementing fault tolerance on SRAM-based FPGAs. 
 
For example, in [66], a system is specified for utilizing Triple Modular Redundancy to 
provide fault tolerance against SEUs.  In this scheme, the circuit is duplicated on three 
different FPGAs.  A voter mechanism is employed to produce the result, assuming at 
least two out of the three FPGAs are operating correctly.  An external microcontroller 
and radiation-hardened PROM complete the circuit.  When voting is not unanimous, the 
microcontroller reprograms the faulty FPGA using bit-stream data read from the PROM.  
A similar paradigm, utilizing radiation-hardened FPGAs as both controllers and 
processors, is presented in [67].  Another work utilizing a radiation-hardened ASIC as the 
voter is described in [68]. 
 
Techniques have also been developed for recovering from SELs, which permanently 
damage the FPGA fabric.  In this case, portions of a circuit residing in a damaged sector 
must be moved to a physically close intact and unused region.  In [69] evolutionary 
techniques are used to determine how hardware blocks should be placed on an FPGA to 
facilitate optimal rearrangement.  At design time, a genetic algorithm is used to determine 
the most flexible manner in which a circuit can be mapped onto an FPGA, creating 
simulated faults to observe needed patterns of rearranging. 
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3. HARDWARE TEMPLATE 

Before an algorithm can be presented for deriving Iterative Repair processors, an 
architecture template is described.  Any simulated annealing search problem can be 
mapped on to this template.  The template described in this section is generalized from a 
from a specific ANSI C implementation of Iterative Repair using simulated annealing.  In 
this implementation, a solution is represented as a string of start times for events 
numbered 0 to 99 for a problem consisting of 100 events that need to be scheduled. 
Events have dependencies, meaning that certain events must complete before others can 
start.  Fig. 3.1 depicts this event dependency graph.  Each event utilizes one unit of one of 
four types of resources.  There are four resources of each type. 
 

 
Figure 9:  Event dependency graph of 100 events.  Events are represented by the numbered nodes.  

Edges indicate dependencies.  Each event also uses one of four resource types, designated by the 
shape of the node. 

 
The resource type associated with each event is designated by the shape of the event node 
in fig. 9.  Each event takes one time step to complete.  Additional input parameters are a 
maximum schedule length of 32 time steps, an initial temperature of 10,000, a cooling 
rate of 0.9999, and a termination threshold of 0.0001.  This means that the schedule 
cannot exceed 32 time steps, the simulated annealing temperature starts at 10,000 and is 
decreased geometrically by 0.9999 on each iteration, and the program terminates when 



 

 23 

the temperature falls below 0.0001.  This means that the loop runs 184,198 times.  For 
this design, 16-bit integer arithmetic and 32-bit floating-point arithmetic were assumed.  
Based upon the pseudocode described in section 2, an application-specific architecture 
was developed to exploit the characteristics of the algorithm.  The architecture is 
composed of a four-stage pipeline coupled with five memory banks.  Each stage in the 
pipeline corresponds to a step in the simulated annealing pseudocode – copy, alter, 
evaluate, and accept.  A global controller coordinates execution and data exchange 
between the units. An interface between memory banks and processors is provided.  An 
Adjust Temperature Processor controls the cooling process.  As this is a pipelined 
architecture, it can only operate as fast as the slowest stage.  Careful design techniques 
must be employed in the more complex stages to minimize the latency.  A block-level 
diagram of this architecture is shown in fig 10.  Each of these stages is discussed in detail 
in this section. 
 

 
Figure 10:  Iterative repair architecture.  A pipelined processor template with associated memory 

constructs is derived from the simulated annealing pseudocode. 
 
3.1 Memory Design 

The architecture consists of five memory banks, numbered zero through four in fig. 10, 
derived from Xilinx FPGA block RAMs. Each memory bank needs one write port and 
four read ports, all 16 bits wide.  Four read ports are needed to facilitate parallelism in the 
Evaluate Stage.  Because a Xilinx block RAM allows for one read and one write port, 
four block RAMs are used in the instantiation of each 128-word (16-bit word) memory 
bank.  Each memory bank holds a solution and the score of the solution.  The memory 
contents are detailed in fig. 11.  At any given point in execution time, one memory bank 
is associated with each of the four processing stages in the pipeline.  The remaining 
memory block holds the current solution.  The main controller determines how memory 
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blocks are associated with different processing stages.  Details on the manner in which 
memory banks are managed are discussed in the section on the main controller.  Because 
the location of data in the memory is known at design time, many cycles are saved during 
execution by avoiding address computations. 

 
Figure 11:  Memory contents.  Each of the five memory modules is configured identically. 

  
3.2 Copy Processor 

As shown in fig. 7, the main loop of the simulated annealing algorithm begins by making 
a copy of the current solution.  This copy is then altered to generate a new solution that 
could potentially replace the current solution.  In the architecture shown in fig. 10, the 
Copy Processor performs this copying function.  The C code for performing the copy 
function is shown here: 
 
for (i=0; i<MAX_EVENTS; i++) 
 dest[i] = source[i]; 
 
Since the length of the solution is known; the contents of the solution in the “current 
solution” memory bank are copied, word by word, into the memory bank currently 
associated with the Copy Processor.  There is no need to accelerate the copy process 
through parallelism, as this pipeline stage is guaranteed to complete in n+1 clock cycles 
for a solution length of n.  Other stages are much more compute-intensive. The copy 
processor is simply a controller to facilitate data transfers.  A “step” signal comes from 
the main controller, indicating that a new pipeline step has begun.  The copy controller 
consists of a counter that generates addresses and produces a “done” signal when all data 
has been copied and also controls the write-enable line on the destination memory bank.  
The source and destination addresses are identical, because the data locations in each 
memory bank are identical, as shown in fig. 11. 
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3.3 Alter Processor 

The second stage in the iterative repair pipeline is the Alter Processor.  One event is 
selected at random from the solution string.  The start time of this event is changed to a 
random time that falls between zero and the maximum latency.  The C code for this 
function is as follows: 
 
i = rand() % MAX_EVENTS; 
j = rand() % MAX_LATENCY; 
sched[i] = j; 
 
The hardware implementation of this stage, shown in fig. 12, could be accelerated by 
introducing an additional random number generator and an additional divider, allowing 
for maximum concurrency.  This additional hardware is not necessary however, as a 15-
cycle integer divider allows this stage to terminate in 21 clock cycles, regardless of the 
size of the solution string.  As solutions generally consist of hundreds of events, even the 
simple Copy Processor will have a greater latency than the Alter Processor.  The alter 
controller is based on a counter that starts when the “step” signal is received from the 
Main Controller, control logic to enable register writing on the “address” and “data” 
registers on the proper clock cycles, and a “done” signal. 

 
Figure 12:  The Alter Processor.  A random number generator is used to select and modify the start 

time of one event. 
 
The random number generators (RNG) used in both the Alter Processor and the Accept 
Processor are 15-bit linear feedback shift registers (LFSRs) which generate a new integer 
between zero and 32,767 on every clock cycle.  Bits 14 and 13 of the shift register are 
tapped and passed through an exclusive-or gate to derive the incoming bit. 
Some improvements could be made to the alter processor to further enhance performance 
in both time and resource utilization.  For example, if “MAX_LATENCY” and 
“MAX_EVENTS” were constrained to be powers of two, the integer divider in fig. 12 
could be replaced with a simple shift register.  The feasibility of constraining 
“MAX_EVENTS” to be a power of two, however, is low for most scheduling problems, 
as the number of events is rarely if ever a perfect power of two.  Leaving the divider unit 
as is allows the architecture to handle problems of varying sizes. 
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3.4 Evaluate Processor 

The Evaluate Processor is by far the most complex of all the pipeline stages in the 
iterative repair architecture.  The task of this processor is to compute a numerical score 
for a potential solution.  Manual design space exploration was performed to arrive at an 
optimal architecture.  The score of a solution to this particular iterative repair problem 
consists of three components.  A penalty is incurred for total clock cycles consumed by 
the schedule.  A second penalty is assessed for double-booking a resource on a given 
clock cycle.  Thirdly, a penalty is assigned for dependency violations, which occur when 
event “b” depends upon the results of event “a”, but event “b” is scheduled before event 
“a”.  The partial scores from each of these three components are weighted and summed to 
produce the solution score. 
 
As part of the simple design space exploration used to design this processor, the entire 
evaluate stage was initially designed as a sequential processor, which resulted in a stage 
latency of over 600 clock cycles.  Because of this latency, it was elected to exploit the 
parallelism inherent to the algorithm.  Each of the three evaluation components described 
above is implemented as an individual pipelined processor.  Because the three 
components of the score can be computed independently and combined at the end, all 
three processors can run in parallel, thus saving substantial clock cycles.  The first sub-
processor, termed the Dependency Graph Violation Processor, or DGVP, is shown in fig. 
13.  

 
Figure 13:  Dependency Graph Violation Processor architecture.  This four-stage pipelined processor 

computes all dependency graph violations for a given schedule. 
 
The original C code from which this processor is derived is shown here: 
 
for (i=0; i<MAX_EVENTS; i++) 
 for (j=0; j<MAX_EVENTS; j++) 
  if ((a_matrix[i][j] == 1) && (sched[j] <= sched[i])) 
   conflicts = conflicts + (sched[i] - sched[j]) + 1; 
 
The processor is a four-stage pipeline.  In the first and second stages, an adjacency matrix 
is used to index the solution memory and determine when parent/child pairs of events are 
scheduled.  A naïve approach to both software and hardware design would be to 
implement the adjacency matrix with a location for every parent/child combination.  A 
one is placed in the matrix when a connection exists.  For example, in fig. 9 there is a 
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connection from event one to event 14.  This is represented by placing a one in 
a_matrix[1][14].  A more efficient method for representing the adjacency matrix, 
especially for sparsely-connected graphs, is to keep track of only those connections that 
actually exist.  While looking through the traditional matrix would incur wasted cycles on 
all event pairs that weren’t adjacent, providing a list of adjacent pairs removes the “if” 
construct from the C code and reduces the complexity of the stage.  In the example in 
question, this reduces the number of look-ups needed from 10,000 (all combinations of 
100 source events and 100 destination events) to only 99, which is the actual number of 
dependencies in fig. 9. 
 
The third and fourth stages determine the magnitude of the penalty, if any, to be incurred 
because the child event is scheduled before the parent event terminates.  The magnitude 
of the penalty encourages offending parent/child pairs to gradually move toward each 
other, thus decreasing the penalty over several iterations and causing the schedule to 
become more optimized. 

 
Figure 14:  The Total Schedule Length Processor architecture. 

 
The second sub-processor, shown in fig. 14, is the Total Schedule Length Processor 
(TSLP).  Its job is to simply compute the total length of the schedule from beginning to 
end.  This 2-stage processor looks through all events one-by-one, updating the earliest 
and latest times seen so far.  Upon conclusion, the difference between the earliest and 
latest times is the schedule length.  The C code for this process is shown here: 
 
for (i=0; i<MAX_EVENTS; i++) { 
 if (sched[i] < start) 
  start = sched[i]; 
 if (sched[i] > stop) 
  stop = sched[i]; 
} 
conflicts = stop - start; 
 
The third sub-processor internal to the Evaluate Processor is the Resource Over-
Utilization Processor (ROP).  This processor, depicted in fig. 15, is responsible for 
checking for resource over-utilization on every resource for every time step. 
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Figure 15:  The Resource Over-utilization Processor architecture.  A timing matrix is first populated 

and then compared against the available resources. 
 
This processor is actually two different pipelined processors.  The first populates a timing 
matrix, which is a two-dimensional matrix that keeps track of the resource utilization of 
every resource for every time step.  This matrix is populated by going through the events 
one by one and determining when each is scheduled and what resource each uses.  The C 
code for this process is shown here: 
 
for (i=0; i<MAX_EVENTS; i++) 
 t_matrix[sched[i]][res_usage[i]]++; 
 
This timing matrix is then passed on to the second processor, in which the utilization of 
each resource at each time step is compared to the total number of available resources of 
that type.  When over-usage occurs, the amount of over-usage is added to the existing 
penalty.  The C code for this is shown here: 
 
for (i=0; i<MAX_LATENCY; i++) 
 for (j=0; j<MAX_RESOURCE_TYPES; j++) 
  if (t_matrix[i][j] > resources[j]) 
   conflicts = conflicts + (t_matrix[i][j]     
   resources[j]); 
 
All three sub-processors have “done” signals.  When all three have completed their tasks, 
the three penalty values are summed to give the total score for the given schedule of 
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events.  This score is stored in the associated main memory bank as depicted in fig. 11.  
The Timing Matrix must be cleared on each iteration.  To avoid using clock cycles on 
this clearing operation, the Timing Matrix is implemented as a double memory 
(sometimes called a ping-pong buffer).  On a given iteration, one block is used for 
computations while the other is being cleared.  Unlike the other stages in the pipelined 
architecture which remain static for any iterative repair problem, the size and speed of the 
Evaluate Processor are not fixed, but rather are dependent upon the size and complexity 
of the list of events to be scheduled. 
 
It should be noted that the different aspects of the solution score may have different 
significance.  For example, dependency graph violations and resource over-utilization 
problems are much more severe than the total schedule length.  The partial scores from 
the DGVP and ROP can then be weighted more-heavily than the score from the TSLP in 
the final score.  This weighting can be done with minimal timing implications by 
performing a one-bit left shift operation to the DGV and ROP scores and a one-bit right 
shift to the TSLP score, thus effectively giving the DGV and ROP scores four times the 
weight of the TSLP score.  This ensures that the critical violations are given first priority 
for removal, while TSLP scores are a secondary consideration. 
 
3.5 Accept Processor 

The Accept Processor’s job is to determine whether to accept the next solution as the new 
current solution.  If the next solution is better than the current solution, the next solution 
is accepted unconditionally.  A solution that is worse than the current solution can also be 
accepted with a computed probability, defined in equation (1).  The C code for this 
process is shown below: 
 
delta_e = cur_value – next_value; 
p = exp(((float)delta_e)/temperature); 
if ((rand() / (float) RAND_MAX) < p) { 
 for (i=0; i<MAX_EVENTS; i++) 
  schedule[i] = next_schedule[i]; 
 cur_value = next_value; 
} 
 
An architecture that supports this computation is shown in fig 16.  This processor mixes 
floating-point numbers with integer numbers, thus necessitating the integer-to-float 
conversion module shown.  The “current score” and “next score” parameters are integers, 
while the “temperature” and “rand_max” parameters are 32-bit floating point.  The 
current score and the next score are read from their respective memory banks.  The 
temperature is provided by the Main Controller.  The random number generator (RNG) is 
a 15-bit tapped shift register, described previously.  The RNG and divider are used to 
generate a number between zero and one that is compared against the acceptance 
probability (p) to determine whether or not the new solution should be accepted.  The 
exponential block is a floating-point unit consisting of a BRAM-based lookup table 
containing 1000 entries representing floating-point input values ranging from negative 
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infinity to zero and floating-point output values ranging from zero to one.  The I-to-F 
block is an integer to single-precision floating-point converter.  Notice that the computed 
acceptance probability is a function of both the quality of the score and current 
temperature.  As the temperature decreases, suboptimal scores are less-likely to be 
accepted. 

 
Figure 16:  The Accept Processor.  The new solution is always accepted if it is better.  If worse, it is 

accepted with a computed probability. 
 
3.6 Adjust Temperature Processor 

The Adjust Temperature Processor is a simple but critical stage in the pipelined 
processor.  The temperature is used to compute the probability of acceptance in the 
Accept Processor and by the Main Controller to determine when the algorithm should 
complete.  There are many options for implementing a cooling schedule for a simulated 
annealing problem.  In this case a popular geometric cooling rate was used, although this 
could easily be replaced with a different function deemed more appropriate for a specific 
application.  The architecture for the Adjust Temperature Processor is shown in fig. 17.  
The current temperature is stored in a register.  When the “step” signal is received, the 
temperature is multiplied by the constant “cooling rate”, which for this architecture is set 
to 0.9999.  This cooling rate allows the temperature to decrease slowly and geometrically, 
allowing for the discovery of better solutions. 
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Figure 17:  Adjust Temperature Processor.  The temperature is reduced geometrically each time this 

processing stage runs. 
 
3.7 Main Controller 

The main controller is responsible for coordinating the sharing of data between 
processing stages, for allowing the pipeline to step ahead at appropriate times, and for 
determining when execution is complete. 
 
The main controller coordinates the sharing of data between stages by keeping track of 
the memory block that is associated with each processing stage.  Upon the completion of 
a pipeline period, the main controller must determine how to reassign the memory blocks 
to the different stages, keeping track of which one holds the current solution and which 
one can be recycled and assigned to the Copy Processor.  This decision process is 
detailed in fig. 18. 

 
Figure 18:  Method for passing memory block pointers between processing stages when (a) the 
solution in the Accept stage is NOT be accepted and (b) the Accept stage solution is accepted. 

 
Two different patterns of moving memory block pointers between processors are needed.  
One for when the solution associated with the Accept stage should be accepted as the 
new current solution and another pattern when the solution associated with the Accept 
stage should simply be thrown out.  In the case where the new solution should not be 
accepted, shown in fig. 18a, the Current Pointer is not updated and all other pointers are 
passed to the next stage.  In the case where the solution should be accepted, shown in fig. 
18b, the memory pointer from the Accept stage is transferred to become the Current 
Pointer and all other pointers are passed to the next stage.  The main controller also 
performs global synchronization.  As shown in fig 10, the main controller receives a 
“done” signal from each of the stages.  When all stages have completed, the main 
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controller sends out a “step” signal to each processor, indicating that they can proceed.  
The main controller also monitors the temperature and halts the system when execution is 
complete. 
 
3.8 Template Performance 

The FPGA resources needed to solve this scheduling problem are shown in Table 1. 
 

Table 1:  Resource consumption and speed 

 
 
Each of the five memory banks uses 4 BRAM blocks, thus the 20 blocks used by the 
Memory Module.  The problem contains 99 dependency edges.  The Dependency Graph 
Violation Processor (DGVP) in the Evaluate Processor needs to look at all 99 edges, plus 
three cycles for the pipeline delay, giving a total of 102 cycles.  The Total Schedule 
Length Processor (TSLP) needs to look at all 100 events, plus one cycle for pipeline 
delays, yielding 101 cycles.  The Resource Over-utilization Processor (ROP) needs to 
look at every event to populate the Timing Matrix, which means 100 cycles plus two for 
pipeline draining, totaling 102 cycles.  It also needs to look at every element in the 
Timing Matrix, which has dimensions of 32 time steps maximum latency and four 
resource types, plus three cycles of pipeline draining, resulting in 131 cycles.  This means 
the Resource Over-utilization Processor has a total latency of 232 cycles.  As this is the 
most costly of the three sub-processors in the Evaluate Processor, the total latency of the 
Evaluate Processor is 233 cycles plus two for the final summations, resulting in a latency 
of 235 cycles. 
 
The target device is a Xilinx Virtex-4 SX35 device, which consists of 15,360 slices, 192 
DSP48 units, and 192 BRAM blocks.  The design assumes 32-bit single-precision 

 Slice 
Count 

DSP48 
Units 

BRAM Latency Max. Freq. 
(MHz) 

Main Controller 160 0 0 3 472 
Copy Processor 30 0 0 101 289 
Alter Processor 390 0 0 21 232 
Eval. Processor 317 0 5 233 222 
     DGVP 94 0 1 102 347 
     TSLP 64 0 0 101 307 
     ROP 164 0 4 232 310 
Accept Processor 1,408 0 1 54 197 
Adjust Temperature 
Processor 

173 5 0 12 444 

Memory 966 0 20 N/A 912 
Complete Processor 2,831 5 26 235 197 
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floating-point arithmetic and 16-bit integer arithmetic.  Single-precision floating point is 
needed to maintain the integrity of the temperature variable.  Experiments with lower 
resolution and with fixed point representations resulted in an erratic and sometimes 
overly rapid temperature decline, which negatively influences the means by which 
simulated annealing avoids the pitfalls of local minima, as discussed in previous sections.  
A stage latency of the pipelined processor is 235 clock cycles, with a maximum clock 
frequency of 197 MHz (post place and route). At this speed, the entire iterative repair 
algorithm, consisting of 184,198 iterations can execute in just over 43 million clock 
cycles, or a wall-clock time of 220 ms.  As shown in Table 2, this is a speedup of more 
than 850 times when compared to a PowerPC, without a floating-point coprocessor, 
running comparable code at 100 MHz. 
 

Table 2:  Comparative Results 

 
While the PowerPC utilized was an embedded FPGA core, it uses a similar instruction set 
and the same basic pipeline architecture as the PowerPC 750 core generally used in space 
applications.   The most significant difference between the two is the maximum clock 
frequency [21].  Furthermore, the custom architecture outperforms a desktop PC by a 
factor of 64. 

 
Table 3:  Load/Store Comparison 

 
The reasons for the massive speed-up of the custom implementation when compared to 
traditional linear processors are three-fold.  First, the custom circuit employs a four-stage 
macro pipeline.  This allows for four different solutions to be at different stages of 
processing simultaneously, rather than only managing one solution at a time in the case 
of traditional processors.  Second, the most complex of the processing stages, the 
evaluate function, has been parallelized in the custom implementation to drastically 

Number of Loads and Stores per function call Function 
PowerPC AMD Athlon Custom Architecture 

Copy 908 702 200 
Alter 14 14 2 
Evaluate ~15,000 ~13,300 840 
Accept 60 42 1 
Adjust Temperature 10 5 2 

Processing Platform Clock Freq. Cycles Time Speedup 
Xilinx Virtex-4 
embedded PowerPC 
core 

100 MHz 1.87x1010 187.1 s 1.0 

AMD Athlon 64 2.61 GHz 3.7x1010 14.265 s 13.11 
Xilinx Virtex-4 
iterative repair circuit 

197 MHz 4.32x107 220 ms 850.5 
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decrease the latency of the pipeline.  Once again, in a conventional processor, no such 
parallelization can occur.  Third, in a conventional processor, up to 50 percent of the 
computation cycles in typical applications can be consumed by load and store 
instructions, especially in CISC architectures which have few internal registers.  Because 
of the application-specific nature of the custom approach, no unneeded load/store cycles 
are consumed.  Table 3 shows the load and store instructions used by each processor on a 
by-function basis.  The custom architecture is by far more efficient in the utilization of 
load and store operations.  
 
Based upon the results of Table 1 and the associated discussion, the performance of the 
custom architecture for larger problem sizes can be estimated.  The size of the 
architecture will vary minimally for different sizes of input problems.  A few additional 
address lines may be needed to address larger memories.  Characterizing the performance 
in time is a much more interesting problem.  In general, the ROP is the most costly with 
respect to time.  The performance of the ROP can be characterized as shown in (2). 
 
tROP = E + (L * R) + 7         (2) 
 
In (2), E represents number of events, L the maximum latency, R the number of 
resources, and tROP the number of clock cycles taken by the ROP processor.  There is a 
total of seven cycles of delay associated with pipeline draining.  Based upon this 
equation, Table 4 provides a performance estimate for the custom architecture compared 
to the PowerPC and the Athlon processor. 

 
 

Table 3:  Problem Size vs. Performance 
 

 
Notice that as the problem size increases, the performance of the conventional processors 
begins drop off in an exponential manner.  This is most-likely the result of a non-linear 
increase in the number of load and store operations introduced by the respective 
compilers.  The custom processor, on the other hand, performs admirably for larger-sized 
problems.  Because of the roughly linear characteristics of (2), handling larger event sets 
is not a problem for the custom architecture.  In general, the larger the problem size, the 
more substantial the gain in execution time provided by the custom architecture. 
 
There are a few differences between the software and custom hardware designs that need 
to be noted.  First, in the pipelined custom hardware design, what should be done with 
solutions that are in the Alter and Evaluate stages when a new solution is accepted by the 
Accept stage?  In the sequential software implementation, this issue does not exist, as 

Execution Time Number of Events 
PowerPC AMD Athlon Custom Architecture 

100 187.1 s 14.625 s 220 ms 
200 644.1 s 49.171 s 313 ms 
400 2520.44 s 192.4 s 500 ms 
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there is no high-level pipeline with multiple solutions in progress to worry about.  This 
problem can be solved in the hardware implementation in one of two ways, either (1) 
flush the pipeline and start with a fresh solution, or (2) simply ignore the problem.  In this 
architecture, we opted for solution 2 because of its simplicity.  Even though the solutions 
in the Alter and Evaluate stages were created from a solution that is no longer the current 
solution, they are still valid potential solutions and can be treated as such.  This saves the 
additional circuitry and delays needed to flush the pipeline.  Because of this caveat, the 
custom hardware implementation may perform in a slightly different manner than the 
software version. 
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4. RESOURCE ESTIMATION AND RIPPLE LIST SCHEDULING 

In addition to the architecture template discussed in the previous chapter, two additional 
concepts must be covered before the methodology for deriving custom architectures for 
iterative repair from C code can be presented.  These two concepts are used as part of 
design space exploration for architecture generation.  Resource estimation is used to 
predict how many FPGA resources (slices, DSP48s, BRAMs) would be used by an 
architecture.  This estimation is much faster than generating VHDL code for every 
architecture and then running synthesis and place-and-route tools on each architecture to 
determine resource utilization.  The second concept is a new form of scheduling for 
mapping control data flow graphs onto resources in an efficient manner. 
 
4.1 Resource Estimation 

Xilinx ISE is a tool for mapping high level hardware designs written using VHDL, 
Verilog, or schematic onto FPGAs and other hardware devices.  The basic building block 
of an FPGA is the look-up table (LUT).  In Xilinx FPGAs, two LUTs and associated 
logic form what is called a slice.  Xilinx FPGAs also contain embedded 18 kb block 
RAM units (BRAMs) and embedded multiply-accumulate ASICs (DSP48s).  One of the 
chief concerns of a hardware designer is ensuring that a hardware design will fit on a 
specific chip. 
 
Running the Xilinx tools on a design is often time-consuming.  Complex designs can take 
several hours to progress through the steps from synthesis to placing and routing.  A 
mechanism for estimating resource utilization and permissible clock speeds without 
running these tools would greatly decrease design time. 
 
One possible method for performing this estimation is to use curve fitting.  Essentially, 
each type of design component is modeled for several different sizes of data inputs.  Each 
model is sent through the Xilinx tool chain and final utilization values are determined.  In 
this manner, a set of points are generated, where each point consists of an independent 
data parameter and dependent utilization parameter.  A handful of these points scattered 
across the design space can be used as an input to a curve-matching algorithm (done 
using Matlab), in which a high-order polynomial equation can be derived which 
approximates the curve represented by the design points. 
 
For example, consider an integer addition unit.  For simplicity, it is assumed that the 
adder takes in two n-bit numbers and produces a single n-bit output, registering the 
output and consuming a single clock cycle.  The goal is to derive a function that relates 
data width (n) to slice consumption and maximum clock speed.  To determine this, 
several different sizes of adders are instantiated using Xilinx ISE, noting the post-place-
and-route utilization statistics for each one, including slices used and maximum allowable 
clock frequency.  This data is shown in table 5.  When using ISE to obtain timing 
statistics, it is important to measure the delay of the circuit only.  By default, ISE maps 
HDL I/O ports to physical I/O buffers on the FPGA, resulting in significant delays that 
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are not actually part of the circuit under test itself.  This problem can be avoided by 
unselecting the “Add IO Buffers” option in the ISE synthesis menu. 
 

Table 5:  Measured resource utilization and clock speed for discrete sizes of integer adders. 
Data Width Slices Maximum Clock Freq. (MHz) 
1 1 1381 
2 1 1381 
4 3 712 
8 4 676 
12 6 619 
16 8 571 
24 12 494 
32 16 436 

 
Using this data, best-fit equations can be derived for both slice utilization and maximum 
allowable clock frequency.  A fifth-order polynomial, generated by Matlab, is deemed 
sufficient for curve approximation.  This fifth-order polynomial is shown in (3). 
 
y = C5n5 + C4n4 + C3n3 + C2n2 + C1n + C0      (3) 
 
The goal is to find the value of all coefficients (Cx). Using the Matlab curve-fitting 
function, the best-fit 5th-order polynomial for slice usage in an integer adder is shown in 
(4). 
 
y = 4.22e-6n5 - 3.46e-4n4 + 1.01e-2n3 - 1.24e-1n2 + 1.05e+0n - 1.74e-1  (4) 
 
This equation can then be used to predict slice utilization for an integer adder of arbitrary 
size.  The correlation between the measured and computed values is shown in fig. 19.  It 
is an almost-perfect match. 

 
Figure 19:  Slice consumption for integer adders. 
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A similar equation and plot can be generated for maximum clock frequency.  These are 
shown in (5) and fig. 20, respectively. 
 
y = -1.22e-3n5 + 1.10e-1n4 - 3.73e+0n3 + 5.86e+1n2 - 4.34e+2n + 1.85e+3  (5) 

 
Figure 20:  Maximum clock frequency for integer adders. 

 
This technique can be repeated for any module in which resource utilization is a function 
of data width.  Table 6 shows the data that has been derived for integer multipliers of 
varying data widths, once again with a single-cycle clock latency. 
 
Table 6:  Measured resource utilization and clock speed for discrete sizes of integer multipliers. 

Data Width Slices DSP48s Maximum Clock Freq. (MHz) 
1 1 0 1381 
2 1 0 1381 
4 4 0 461 
8 0 1 277 
12 0 1 277 
16 0 1 277 
24 0 3 128 
32 0 3 128 

 
In addition to slices, integer multipliers use DSP48 resources on the FPGA.  Equations 
are derived for slice utilization (6), DSP48 utilization (7), and maximum clock frequency 
(8). 
 
y = 3.28e-5n5 - 2.68e-3n4 + 7.80e-2n3 - 9.61e-1n2 + 4.47e+0n - 3.20e+0  (6) 
y = 4.22e-6n5 - 3.46e-4n4 + 1.01e-2n3 - 1.24e-1n2 + 1.05e+0n - 1.74e-1  (7) 
y = -4.73e-4n5 + 6.25e-2n4 - 2.90e+0n3 + 5.93e+1n2 - 5.36e+2n + 1.99e+3  (8) 
 
Fig. 21, 22, and 23 show the quality of the estimation for slices, DSP48 units, and 
maximum clock frequency, respectively.  Estimations are generally very accurate. 
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Figure 21:  Slice utilization for integer multiplier. 

 
 

 
Figure 22:  DSP48 utilization for integer multiplier. 
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Figure 23:  Maximum clock frequency for integer multiplier. 

 
A set of equations for multiplexers is also derived.  The number of inputs to a traditional 
multiplexer is generally a power of 2 (2, 4, 8, 16, 32, etc.).  In many cases, not all input 
lines may be used.  In theory, creating a multiplexer with 31 inputs should use the same 
resources as one with 32.  Due to suboptimal analysis by the Xilinx tools, however, this 
was found to be an incorrect assumption in general.  The measured slice utilization data 
for multiplexers is given in table 7. 
 

Table 7:  Measured resource utilization and clock speed for discrete sizes of multiplexers. 
Number of inputs Slices Maximum Clock Freq. (MHz) 
2 1 2299 
3 1 1377 
4 1 1377 
5 2 912 
6 2 912 
7 2 975 
8 2 975 
9 3 625 
10 4 625 
11 4 721 
12 5 598 
13 4 598 
14 4 598 
15 4 754 
16 4 754 
17 6 458 
18 8 442 
19 8 404 
20 8 436 
21 7 442 
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22 9 415 
23 9 375 
24 10 387 
25 7 507 
26 8 507 
27 9 441 
28 9 441 
29 9 441 
30 9 450 
31 8 615 
32 8 615 

 
The equations for modeling the slice usage and maximum clock frequency of 
multiplexers are given in (9) and (10), respectively. 
 
y = 4.18e-6n5 - 3.72e-4n4 + 1.12e-2n3 - 1.36e-1n2 + 9.63e-1n - 8.12e-1  (9) 
y = - 1.20e-3n5 + 1.21e-1n4 - 4.52e+0n3 + 7.98e+1n2 - 6.89e+2n + 3.05e+3  (10) 
 
The performance of the estimation for the slice utilization is shown in fig. 24.  Even for 
this odd-shaped graph with several discontinuities, a fifth-order polynomial provides an 
acceptable estimation.  The frequency performance graph is also shown in fig. 25. 
 

 
Figure 24:  Slice utilization for multiplexers. 
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Figure 25:  Maximum clock frequency for multiplexers. 

 
After characterization of several iterative repair and other simulated annealing 
algorithms, a set of nine basic modules has been identified for parameterization.  These 
nine modules are multiplexers, registers, random number generators (RNG), and six 
integer arithmetic operators (adder, subtractor, multiplier, divider, modulo arithmetic, and 
absolute value (ABS)).  All modules are assigned a latency of one clock cycle, with the 
exception of the divider and modulo units, which take 19 cycles, and the multiplexers, 
which are not clocked.  Table 8 provides the fifth-order coefficients for resource 
utilization equations and clock frequency equations for all nine modules.  Note that all 
modules use slices, while only multipliers employ the use of DSP48 units. 
 

Table 8:  Fifth-order equation coefficients for all supported blocks. 
Parameter C5 C4 C3 C2 C1 C0 
adder 
slices 

4.2210 
e-006 

-3.4624 
e-004   

1.0094 
e-002 

-1.2379 
e-001   

1.0502 
e+000 

-1.7433 
e-001 

adder 
frequency 

-1.2180 
e-003 

1.1023 
e-001 

-3.7314 
e+000 

5.8622 
e+001 

-4.3409 
e+002 

1.8534 
e+003 

subtractor 
slices 

4.2210 
e-006  

-3.4624 
e-004   

1.0094 
e-002  

-1.2379 
e-001   

1.0502 
e+000  

-1.7433 
e-001 

subtractor 
frequency 

-1.2180 
e-003 

1.1023 
e-001 

-3.7314 
e+000 

5.8622 
e+001 

-4.3409 
e+002 

1.8534 
e+003 

multiplier 
slices 

3.2830 
e-005 

-2.6831 
e-003 

7.8032 
e-002 

-9.6178 
e-001 

4.4677 
e+000 

-3.2061 
e+000 

multiplier 
DSP48s 

2.2727 
e-006 

-2.0191 
e-004 

6.1369 
e-003 

-7.4108 
e-002 

4.2923 
e-001 

-5.2696 
e-001 

multiplier 
frequency 

-4.7294 
e-004 

6.2525 
e-002 

-2.9023 
e+000 

5.9290 
e+001 

-5.3634 
e+002 

1.9880 
e+003 

divider 
slices 

0 0 0 0 0 3.2200 
e+002 
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divider 
frequency 

0 0 0 0 0 3.3000 
e+002 

modulo 
slices 

0 0 0 0 0 3.2200 
e+002 

modulo 
frequency 

0 0 0 0 0 3.3000 
e+002 

RNG 
slices 

0 0 0 0 0 9.0000 
e+000 

RNG 
frequency 

0 0 0 0 0 1.0380 
e+003 

ABS 
slices 

7.5318 
e-008 

1.0667e 
-004 

-7.7516 
e-003 

1.7508 
e-001 

-2.4127 
e-001 

6.8765 
e-002 

ABS 
frequency 

-1.1498 
e-002 

9.5933 
e-001 

-2.9028 
e+001 

3.8969 
e+002 

-2.2666 
e+003 

4.9340 
e+003 

register 
slices 

0 0 0 0 0 1.0000 
e+000 

register 
frequency 

0 0 0 0 0 3.4600 
e+003 

multiplexer 
slices 

4.1773 
e-006 

-3.7247 
e-004 

1.1232 
e-002 

-1.3629 
e-001 

9.6286 
e-001 

-8.1262 
e-001 

multiplexer 
frequency 

-1.2063 
e-003 

1.2064 
e-001 

-4.5216 
e+000 

7.9830 
e+001 

-6.8925 
e+002 

3.0466 
e+003 

 
Now that the basic building blocks have been parameterized, the next question is to 
determine how well this method will estimate circuits comprised of two or more of these 
blocks.  In theory, resource consumption should be a roughly additive property, while 
maximum clock frequency should be close to that of the worst-performing block.  As a 
simple example the circuit shown in fig. 26 is considered. 

 
Figure 26:  Simple circuit with an addition operation followed by a squaring operation. 

  
Using the blocks described above, the circuit of fig. 26 takes two clock cycles to produce 
a result.  This circuit can be implemented with various data bit widths.  Table 9 shows the 
results for bit widths ranging from 4 to 24. 
 

Table 9:  Computed vs. actual values for simple add/multiply circuit. 
Slice Utilization DSP48 Utilization Maximum Clock Freq. (MHz) Data 

width Computed Actual Computed Actual Computed Actual 
4 8 5 0 0 461 552 
8 4 4 1 1 277 417 
12 6 6 1 1 277 395 
16 8 8 1 1 277 375 
24 12 12 3 3 128 133 

+ * 
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Notice that the slice utilization and DSP48 utilization predictions are reasonably close to 
the actual post-place-and-route values for all data widths.  The predicted maximum clock 
frequencies, on the other hand, are substantially lower than the actual values, especially 
in circuits with smaller data widths.  It is obvious that Xilinx ISE must do some 
additional optimization of the circuit as a whole to reduce the delay.  This additional 
optimization is very hard to characterize. 
 
For a more-complex example, let consider the circuit depicted in fig. 27.  The resource 
utilization and timing statistics are shown in table 10. 

 
Figure 27:  Multi-functional add/multiply circuit. 

 
Table 10:  Resource utilization and timing statistics for complex add/multiply circuit. 

Slice Utilization DSP48 Utilization Maximum Clock Freq. (MHz) Data 
width Computed Actual Computed Actual Computed Actual 
4 20 13 0 0 461 338 
8 28 13 1 1 277 244 
12 42 19 1 1 277 244 
16 56 25 1 1 277 244 
24 84 37 3 3 128 115 
  
The actual slice utilization in this example is consistently lower than the computed 
values.  This suggests that optimizations are mode to share resources between sub-
modules.  Also, delay estimates are not even close to the actual numbers, although the 
same trend of closer matching with increasing data widths applies to this circuit as well. 
 
For an extreme case of one adder feeding another, the circuit depicted in fig. 28 is 
considered.  This pipelined circuit has a latency of six cycles.  Numerical results are 
shown in table 11. 

 
Figure 28:  A 6-adder chain circuit. 

 
 
 
 

+ + + + + + 

+ 
* 
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Table 11:  Resource utilization and timing statistics for the 6-adder chain. 
Slice Utilization DSP48 Utilization Maximum Clock Freq. 

(MHz) 
Data 
width 

Computed Actual Computed Actual Computed Actual 
4 18 21 0 0 712 635 
8 24 24 0 0 676 573 
12 36 36 0 0 619 531 
16 48 48 0 0 571 495 
24 72 72 0 0 494 436 
 
In this circuit, the computed and actual resource utilization is almost identical for all 
cases.  The actual maximum clock frequency is consistently higher than predicted. 
 
In conclusion, this method of approximating FPGA performance seems to perform 
reasonably well for estimating resource utilization.  It can be concluded that resource 
usage is generally an additive property for more-complex circuits built from simple 
parameterized blocks.  Timing performance, on the other hand, is not so easy to 
characterize.  In any pipelined or clocked circuit, the maximum clock frequency is 
constrained by the worst-case critical path between any two registers in the circuit.  In 
theory, the lowest maximum allowable frequency of all of the simple blocks in a circuit 
would be the maximum clock frequency of that circuit.  However, because of 
optimizations performed by the synthesis tools, complex circuits consistently perform 
better than the individual parts.  A complete set of plots of resource usage and frequency 
performance for all nine of the targeted modules discussed in this section is provided in 
Appendix A. 
 
4.2 Ripple List Scheduling 

4.2.1 Overview 

To estimate the temporal performance of an architecture, a mapping must take place of 
the operations to be performed onto the available resources.  For example, fig. 29 depicts 
a set of 7 arithmetic operations (addition, multiplication, and division) and their 
associated dependencies.  This dataflow graph can be scheduled on an architecture that 
consists of assorted addition, multiplication, and division units. 

 
Figure 29:  A simple dataflow graph. 
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A standard method for performing these types of scheduling problems is List Scheduling 
[70].  The basic List Scheduling algorithm, also known as Critical Path Scheduling, 
consists of assigning a static priority to each node in the graph and scheduling the nodes 
according to priority.  These static priorities are assigned by measuring the “distance” 
from the node in question and a sink node.  For example, in fig. 29, if multiplication and 
division took two time units and addition one time unit, node “g” would be assigned a 
priority of 2, “e” and “f” a priority of 4, and “a”, “b”, “c”, and “d” a priority of 5.  Once 
priorities have been assigned, nodes are successively scheduled by availability and 
highest priority.  In the example of fig. 29, if a resource set of one adder, one multiplier, 
and one divider is assumed, any one of “a”, “b”, “c”, or “d” could be selected to run in 
the first time slot.  Once “a” and “b” have completed, “e” could be scheduled.  One 
possible list scheduling for fig. 29 is shown in table 12. 
 

Table 12:  A List Schedule for the DFG shown in fig. 19. 
Time Step Adder Multiplier Divider 
0 a   
1 b   
2 c e1  
3 d e2  
4  f1  
5  f2  
6   g1 
7   g2 

 
In this case, the entire dataflow graph can be scheduled in eight time steps.  This happens 
to be an optimal schedule for this operation/resource pairing.  No matter how the 
operations are scheduled, a valid schedule that takes less than eight steps cannot be 
found. 
 
Unfortunately, Critical Path Scheduling is not guaranteed to find an optimal schedule.  
Considering the example of fig. 29 once again, it is equally possible that the list scheduler 
could come up with the schedule shown below in Table 13. 
 

Table 13: An alternative List Schedule for the DFG shown in fig. 19. 
Time Step Adder Multiplier Divider 
0 a   
1 c   
2 b   
3 d e1  
4  e2  
5  f1  
6  f2  
7   g1 
8   g2 
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Because “c” was selected to occupy the adder during time step 1, “e” was delayed until 
step 3, which delayed “f” to step 5 and “g” to step 7.  An extra time step is needed to 
complete all of the computations.  More broadly, there are 4!, or 24, different orders in 
which a list scheduler can schedule “a”, “b”, “c”, and “d”.  Of those 24 permutations, 
only 8 will produce the optimal schedule.  In other words, in this simple example there is 
only a 1 in 3 chance that List Scheduling will perform properly.  In more complex 
scheduling problems with more nodes, more edges, more resources, and pipelining 
constraints, more opportunities for choosing suboptimal operations will occur and the 
odds of stumbling across the optimal schedule will decrease even more. 
 
While List Scheduling has been shown to be a suboptimal algorithm, it has one nice 
characteristic that can be leveraged to design a better scheduler – List Scheduling is fast.  
In fact, it has a computational complexity of only O(Tn), where T is the number of time 
slots and n is the number of nodes to be scheduled.  Other scheduling algorithms, such as 
Force-Directed Scheduling or Force-Directed List Scheduling, derive more-efficient 
schedules, but involve the repeated multi-step re-computation of priority values for each 
remaining node every time a node is scheduled, resulting in more-complex algorithms.  
For example, Force-Directed List Scheduling is an O(n2) algorithm.  List Scheduling, on 
the other hand, requires only an initial static priority assignment. 
 
Many improvements and modifications to the basic List Scheduling algorithm, such as 
Modified Critical Path [71, 72], Earliest Time First [73], Dynamic Critical Path [74], 
topological clustering [75], Critical Node Parent Trees [76], Cone-Based Clustering[77], 
and Partial Critical Path scheduling [78], have been proposed over the years.  These 
algorithms improve the performance of the basic List Scheduling algorithm at the 
expense of increasing algorithm complexity.  Different techniques are employed for each 
type of scheduling. 
 
For example, Modified Critical Path scheduling requires re-computing the critical path 
after every node scheduling event.  Every time a node is scheduled, the critical path 
through the remaining nodes may change.  This method improves schedule optimality.  
The time complexity of this algorithm is O(n2logn).  A “brute-force” version of Modified 
Critical Path scheduling is Dynamic Critical Path scheduling, with a complexity of O(n3). 
 
The Earliest Time First algorithm requires that earliest start times for all ready nodes be 
computed on each scheduling step.  The earliest start times are computed by finding the 
distance from the sink node.  The node with the lowest start time is selected.  This 
algorithm requires O(n2 ) work to schedule each of n nodes, making this also an O(n3) 
algorithm. 
 
All surveyed modifications to the List Scheduling algorithm have time complexities 
ranging from O(n2) to O(n3), which are too time-consuming for use inside of a design-
space explorer where the scheduler could be run hundreds or thousands of times on very 
large graphs.  A more-efficient algorithm is needed that runs in better than O(n2) time. 
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4.2.2 Proposed Algorithm 

The proposed algorithm provides a flexible manner of improving the basic Critical Path 
List Scheduling algorithm.  The tradeoff between algorithmic complexity and solution 
quality can be adjusted through the modification of one simple parameter.  For reasons 
that will be described below, this new method will be termed Ripple List Scheduling.  
The Ripple List Scheduling algorithm consists of (1) identifying sink nodes and assigning 
static node priorities in the same manner as done by Critical Path List Scheduling, (2) 
repeatedly scheduling the node with the highest priority in the ready list on the current 
time step, and (3) updating the priority of remaining nodes in a dynamic manner based 
upon distance from the scheduled node.  Pseudocode that describes this algorithm in 
detail is shown below: 
 
 assign static priority to each node in graph 
 initialize time to 0 

Loop while unscheduled nodes exist 
 Loop until no nodes can be scheduled on time step 
  update list of ready nodes 
  schedule highest priority node possible 
  adjust priority of remaining nodes 
 EndLoop 
 increment time 
EndLoop 

 
 The only major difference between this algorithm and classic List Scheduling is 
the priority adjustment on remaining nodes after every node has been scheduled.  Three 
things must be known to adjust the priority of a node:  first, the distance between the 
node in question and the recently scheduled node; second, the ripple factor; and third, the 
maximum ripple distance. 
 
In order to compute the ripple factor, let us first borrow the definition of the degree of a 
vertex from graph theory.  The degree of a vertex is the number of edges (both incoming 
and outgoing in the case of a directed graph) incident to it.  The largest vertex degree in 
the entire graph will be designated the graph degree, represented as DG.  Also, let us 
define the distance between two vertices as the minimum number of edge traversals 
needed to move from one to the other (edge directionality is ignored in this case), 
represented as d. 
 
The ripple factor, defined as Rf, is computed as shown in equation 11. 

d
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=           (11) 

 
 
The ripple factor for a given node is added to the priority of that node to create a new 
priority level.  This priority level can change every time any node in the graph is 
scheduled.  As can be seen from the equation, the ripple factor is inversely proportional 
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to the distance from the scheduled node.  This dynamic priority adjustment can be 
thought of as a ripples propagating out from a stone dropped in a pond.  The ripple size 
gradually decreases as it travels farther from the source.  The ripple factor is computed as 
such to allow for variations in dynamic priority between nodes with the same static 
priority, while at the same time preventing the dynamic priority from encroaching upon 
nodes with a higher static priority.  In other words, nodes with a static priority of three 
will end up with a dynamic priority greater than or equal to three, but guaranteed to be 
less than four, thus avoiding conflicts with nodes with static priority of four.  Fig. 30 
shows an example of this ripple effect on the graph introduced in fig. 29. 

.   
Figure 30:  An example of ripple factor propagation in the Ripple List Scheduling algorithm. 

 
In fig. 30, it is assumed that node “e” is being scheduled.  Disregarding the feasibility of 
“e” being scheduled before “a” and “b”, all other nodes in the graph would be updated by 
the specified amounts.  The graph degree in this case is 3, as no vertex has more than 3 
edges incident to it.  Nodes that are one step away get updated by a ripple factor of 1/31, 
those that are two steps away get updated by 1/32, and so forth. 
 
As stated before, the maximum ripple distance can be used to balance the performance of 
the algorithm between execution time and solution quality. 
 
 
4.2.3 Performance 

The Ripple List Scheduling algorithm can be compared with standard Critical Path List 
Scheduling.  For all examples in this section, addition and subtraction operations take one 
clock cycle; multiplication and division take two.  Both multiplication and division units 
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are pipelined (i.e. new data can be accepted on each clock cycle).  The Critical Path List 
Scheduling algorithm was performed 1000 times on each DFG and the mean schedule 
length and standard deviation are computed in each case.  Fig. 31 shows the correlation 
between colors in the DFG representations and arithmetic operators. 
 

 
Figure 31:  Color coordination for operations shown in data flow graphs. 

 
Let us first consider the simple DFG shown in fig. 32.   

 
Figure 32:  A simple 8-node DFG. 

 
This DFG has been scheduled for a variety of different resource sets.  Results are shown 
in Table 14.  Columns are present for Critical Path List Scheduling (CPLS) and three 
versions of Ripple List Scheduling (RLS).  The number following the RLS designation in 
parentheses is the maximum ripple distance.  In this simple example, all four scheduling 
techniques derive an optimal schedule. 
 

Table 14:  Schedules for the DFG shown in fig. 22. 
+ * ÷ CPLS 

Schedule  
Length 

RLS(1) 
Schedule  
Length 

RLS(2) 
Schedule 
Length 

RLS(3) 
Schedule 
Length 

1 1 1 8 8 8 8 
1 2 1 8 8 8 8 
2 2 1 6 6 6 6 

 
 
Next, let us consider the larger graph shown in fig. 33.  The scheduling results for this 
graph are shown in Table 15. 
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Figure 33: A 15-node, 3-operation-type DFG. 

 
Table 45:  Schedules for the DFG shown in fig. 23. 

+ * ÷ CPLS 
Schedule 
Length 

RLS(1) 
Schedule 
Length 

RLS(2) 
Schedule 
Length 

RLS(3) 
Schedule 
Length 

1 1 1 x = 14.0, σ = 0.0 14 14 14 
1 2 1 x = 11.25, σ = 0.43 10 10 10 
1 3 1 x = 10.56, σ = 0.49 10 10 10 

 
In Table 15, the mean CPLS schedule is given along with a standard deviation.  Notice 
that as the number of resources is increased, RLS begins to perform better than CPLS.  
The other nice characteristic is that RLS generates the same schedule every time it is 
executed on the same problem.  There is no need to worry about means and standard 
deviations.  Even when the maximum ripple distance is restricted to one, an immediate 
improvement is gained in two of the three cases shown. 
 
The next example is shown in fig. 34.  This DFG appears to be a good candidate for 
extracting parallelism.  The scheduling results are shown in Table 16. 
 

 
Figure 34: A 63-node, 3-operation-type DFG. 

 
Table 16:  Scheduling results for the DFG shown in fig. 24. 

+ * ÷ CPLS Schedule 
Length 

RLS(1) 
Sched. 
Length 

RLS(2) 
Sched. 
Length 

RLS(3) 
Sched. 
Length 

RLS(4) 
Sched. 
Length 

RLS(5) 
Sched. 
Length 

1 1 1 x = 46.0, σ = 0.0 46 46 46 46 46 
1 2 1 x = 30.60, σ = 0.86 34 26 28 26 26 
1 3 1 x = 28.26, σ = 0.67 31 26 26 26 26 
2 3 1 x = 20.96, σ = 0.40 22 20 20 20 20 
3 5 1 x = 16.8, σ = 0.39 18 16 16 16 16 
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Once again, the RLS algorithm performs better than CPLS in general.  Notice that 
RLS(1), however, actually performs worse.  This suggests that RLS(1) should generally 
be avoided.  In one case, RLS(3) also yields sub-optimal performance.  RLS(4) appears 
to be a safe bet. 
 
The final example, shown in fig. 35, is a deeper graph than the one shown in fig. 34.  The 
scheduling results are shown in Table 17. 
 

 
Figure 35:  A 100-node, 4-operation-type DFG. 

 
Table 17: Scheduling results for the DFG shown in fig. 25. 

+ - * ÷ CPLS Schedule 
Length 

RLS(1) 
Sched. 
Length 

RLS(2) 
Sched. 
Length 

RLS(3) 
Sched. 
Length 

RLS(4) 
Sched. 
Length 

RLS(5) 
Sched. 
Length 

1 1 1 1 x = 35.0, σ = 0.0 35 35 35 35 35 
1 1 1 1 x = 32.0, σ = 0.0 32 32 32 32 32 
7 7 6 6 x = 19.04, σ = 0.21 19 19 19 19 19 
7 7 3 3 x = 20.04, σ = 0.21 20 20 20 20 20 
 
Once again, RLS performs as well as or better than CPLS in all cases.  In this example, 
all versions of RLS perform in an identical manner. 
 
In summary, Ripple List Scheduling performs as well as or better than traditional Critical 
Path List Scheduling in all cases.  At the same time, it is much less compute-intensive 
than other algorithms proposed over the years.  Rather than the O(n2) to O(n3) complexity 
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required by these algorithms, RLS has a variable complexity which is a function of the 
maximum ripple distance.  Adequate results can be achieved with a maximum ripple 
distance of only two or three steps, making RLS an algorithm of complexity O(nm), 
where m is the maximum ripple distance. 
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5. ARCHITECTURE DERIVATION 

In this section, a novel algorithm and associated tool flow (SATH) are described for 
generating FPGA-based application specific processors for simulated annealing 
algorithms.  Fig. 36 shows a flow chart of the different steps in the tool.  First, C code to 
be converted is provided to the system, along with architecture templates for different 
components.  Next, the intermediate representation (IR) is interpreted and divided into 
modules.  In each module, the IR is mapped to the associated template.  Finally, the 
derived architectures are combined and translated into synthesizable VHDL code.  
Details of the simulated annealing template and the tool flow are discussed here. 

 
Figure 36:  The SATH Tool flow. 

 
In order to facilitate the discussion of the SATH tool flow, the classic Traveling 
Salesperson Problem (TSP) is used.  Briefly, TSP is defined as a minimization problem in 
which a salesperson must visit n cities in any order, the goal being to minimize the total 
distance the salesperson must travel.  In this example, 100 cities are considered; each 
assigned a random (x, y) location on a 100 by 100 grid.  Distances between cities are 
measured using Manhattan distance (distances are measured on a grid, rather than 
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straight-line).  A simple geometric cooling schedule is assumed.  A solution is 
represented by keeping an array of the order in which cities are visited.  The array indices 
represent the order of visitation, while the entries represent the cities.  Separate static 
arrays store the location of each city on the grid. 
 
5.1 Simulated Annealing Template 

As discussed in Chapter 3, the simulated annealing algorithm lends itself well to 
implementation as an application-specific, coarse-grained pipelined processor.  The block 
diagram of the processor template derived in Chapter 3 is duplicated here for 
convenience, shown in fig. 37. 

 
Figure 37:  The simulated annealing design template. 

 
The template is composed of a four-stage pipeline coupled with five memory banks.  
Each stage in the pipeline corresponds to a step in the simulated annealing pseudocode 
(fig. 1) – copy, alter, evaluate, and accept.  A global controller coordinates execution and 
data exchange between the units. An interface between memory banks and processors is 
provided.  An Adjust Temperature Processor controls the cooling process.  As this is a 
pipelined architecture, it can only operate as fast as the slowest stage.  At any given point 
in execution time, one memory bank is associated with each of the four processing stages 
in the pipeline.  The remaining memory block holds the current solution.  The main 
controller determines how memory blocks are associated with different processing stages. 
 
5.2 C Code to Intermediate Format 

The first stage in the SATH tool uses the front end of the GNU gcc compiler.  The gcc 
compiler provides extensive options for dumping various intermediate formats to files.  
For SATH, the “.cfg” format is generated.  This format is a single-assignment three-
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address code, similar in structure to C.  This code is then passed through the Intermediate 
Representation Generator portion of SATH to produce a custom intermediate 
representation that is a low-level control data flow graph (CDFG).  Fig. 38 shows the 
graphical output of this stage for the Alter portion of the TSP example.  The C code for 
this portion is shown here. 

void alter(int *next) { 
 int a, b, temp; 
 
 a = rand() % MAX_EVENTS;  
 b = rand() % MAX_EVENTS; 
 temp = next[a]; 
 next[a] = next[b]; 
 next[b] = temp; 
} 

The Intermediate Representation Generator (IRG) is actually a two-pass compiler stage.  
In the first stage, the “.cfg” format taken from gcc is parsed.  For the Alter function C 
code listed above, the generated “.cfg” file is as follows.  
alter (next) 
{ 
  int temp; 
  int b; 
  int a; 
  int * D.3031; 
  int * D.3030; 
  unsigned int D.3029; 
  unsigned int b.8; 
  int D.3027; 
  int * D.3026; 
  int * D.3025; 
  unsigned int D.3024; 
  unsigned int b.7; 
  int * D.3022; 
  int * D.3021; 
  unsigned int D.3020; 
  unsigned int a.6; 
  int * D.3018; 
  int * D.3017; 
  unsigned int D.3016; 
  unsigned int a.5; 
  int D.3014; 
  int D.3013; 
 
  # BLOCK 0 
  # PRED: ENTRY (fallthru) 
  D.3013 = rand (); 
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  a = D.3013 % 100; 
  D.3014 = rand (); 
  b = D.3014 % 100; 
  a.5 = (unsigned int) a; 
  D.3016 = a.5 * 4; 
  D.3017 = (int *) D.3016; 
  D.3018 = D.3017 + next; 
  temp = *D.3018; 
  a.6 = (unsigned int) a; 
  D.3020 = a.6 * 4; 
  D.3021 = (int *) D.3020; 
  D.3022 = D.3021 + next; 
  b.7 = (unsigned int) b; 
  D.3024 = b.7 * 4; 
  D.3025 = (int *) D.3024; 
  D.3026 = D.3025 + next; 
  D.3027 = *D.3026; 
  *D.3022 = D.3027; 
  b.8 = (unsigned int) b; 
  D.3029 = b.8 * 4; 
  D.3030 = (int *) D.3029; 
  D.3031 = D.3030 + next; 
  *D.3031 = temp; 
  return; 
  # SUCC: EXIT 
} 
Notice both the similarities and differences between this intermediate format and general 
C.  The single-assignment characteristics elongate the code significantly.  This code is 
then parsed by IRG and a text-based control data flow graph is created.  The control data 
flow graph representation of the code above is shown below.FUNCTION alter 
BASIC_BLOCK 0 
DATA_NODE 0 FUNCTION rand 
DATA_NODE 1 MOD integer 
CONST_NODE 0 100 
DATA_NODE 2 FUNCTION rand 
DATA_NODE 3 MOD integer 
CONST_NODE 1 100 
DATA_NODE 4 CAST 
DATA_NODE 5 MUL integer 
CONST_NODE 2 4 
DATA_NODE 6 CAST 
DATA_NODE 7 ADD integer 
DATA_NODE 8 LOAD events 
DATA_NODE 9 CAST 
DATA_NODE 10 MUL integer 
CONST_NODE 3 4 
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DATA_NODE 11 CAST 
DATA_NODE 12 ADD integer 
DATA_NODE 13 CAST 
DATA_NODE 14 MUL integer 
CONST_NODE 4 4 
DATA_NODE 15 CAST 
DATA_NODE 16 ADD integer 
DATA_NODE 17 LOAD events 
DATA_NODE 18 STORE events 
DATA_NODE 19 CAST 
DATA_NODE 20 MUL integer 
CONST_NODE 5 4 
DATA_NODE 21 CAST 
DATA_NODE 22 ADD integer 
DATA_NODE 23 STORE events 
DATA_NODE 24 RETURN 
DATA_CON 0 1 d a 
DATA_CON 0 1 c b 
DATA_CON 2 3 d a 
DATA_CON 1 3 c b 
DATA_CON 1 4 d a 
DATA_CON 4 5 d a 
DATA_CON 2 5 c b 
DATA_CON 5 6 d a 
DATA_CON 6 7 d a 
DATA_CON 7 8 d a 
DATA_CON 1 9 d a 
DATA_CON 9 10 d a 
DATA_CON 3 10 c b 
DATA_CON 10 11 d a 
DATA_CON 11 12 d a 
DATA_CON 3 13 d a 
DATA_CON 13 14 d a 
DATA_CON 4 14 c b 
DATA_CON 14 15 d a 
DATA_CON 15 16 d a 
DATA_CON 16 17 d a 
DATA_CON 12 18 d a 
DATA_CON 17 18 d d 
DATA_CON 3 19 d a 
DATA_CON 19 20 d a 
DATA_CON 5 20 c b 
DATA_CON 20 21 d a 
DATA_CON 21 22 d a 
DATA_CON 22 23 d a 
DATA_CON 8 23 d d 
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This format enumerates all nodes and edges.  Nodes can be data nodes or constant nodes.  
An edge connects two data nodes or a constant node and a data node.  Multiple Basic 
Blocks are also supported.  IRG produces a visual depiction of the code above, showing 
data connections, operator types, constants, etc.  Fig. 38 shows the Alter stage 
represented in this graphical format. 

 
Figure 38:  Raw intermediate representation of the Alter stage. 

 
The format depicted in fig. 38 is a direct translation from the gcc file.  There are 
significant optimizations and simplifications that can be made.  For example, fig. 38 
depicts only data dependencies, not anti-dependencies.  Also, several nodes and sub-
graphs can be removed.  Node 24 is a return node (RET).  This has no bearing on the 
graph functionality and is thus discarded.  Array indexing or any sort of address 
computation can also be simplified.  Because gcc maps 32-bit integer data onto a byte-
addressable processor, a cast – multiply (by four) – cast – add (base + offset) construct 
appears when an array element is addressed.  This entire sub-graph can be removed, as 
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the target architecture memory is word-addressable and the base of the array is always at 
address zero.  Fig. 39 depicts the optimized Alter graph upon exit from the IRG stage. 

 
Figure 39:  Optimized intermediate representation of the TSP Alter function. 

 

The intermediate representation consists of arithmetic and data-transfer nodes.  Fig. 39 
contains random number generation (RND), modulo (MOD), load (LD), and store (ST) 
instructions.  Constants are also represented as nodes.  Edges represent data dependencies 
and anti-dependencies.  Data dependency edges are labeled according to their relationship 
to the node they feed.  For example, a MOD node needs an input labeled “a” and one 
labeled “b”.  A store node needs an address to write to (labeled “a”) and data to write 
(labeled “b”).  Unlabeled edges represent anti-dependencies.  Similar graphs are 
produced for each of other three steps in the pipeline and the Adjust Temperature 
module. 
 

5.3 Intermediate Format to Architecture 

Once the different functions have been parsed and converted to intermediate format, 
SATH must perform a mapping of intermediate format to template for each stage.  As 
shown in fig. 37, different stages in the pipeline achieve this mapping in different 
manners.  The architectures of the Copy, Alter, and Adjust Temperature processors are 
fixed.  Regardless of the specifics of the simulated annealing algorithm under conversion, 
these three modules perform the same function.  The Copy Processor copies a solution 
from one memory bank to another, word by word.  The solution size, which is the 
number of words to copy, is extracted as part of the Copy Constant Extraction block 
shown in fig. 37.  The Adjust Temperature Constant Extraction block extracts the initial 
temperature and the cooling rate. 
 
The internals of the Alter and Evaluate processors, on the other hand, vary with differing 
applications.  The general form of each stage, however, can be characterized.  An Alter 
Processor can generally be characterized as a modification to one or two entries in the 
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solution.  In the case of the TSP example, two locations in the array are selected at 
random and the data is swapped, as shown in fig. 39.  This changes the order in which 
cities are visited and will affect the score of the solution. 
 
An architecture which supports the CDFG shown in fig. 39 is shown in fig. 40.  It 
consists of one random number generator, one modulo unit, one read port, and one write 
port, with additional multiplexers and delay registers to provide proper timing.  
Additionally, a control unit is needed to manage multiplexer select and memory write 
enable lines.  This architecture is optimized for resource utilization.  Because functional 
units such as the random number generator and modulo units are used twice, the latency 
of this architecture is larger than that of an architecture with multiple RND and MOD 
units. 

 
Figure 40:  Minimal architecture for the TSP Alter function. 

The Evaluate processor, on the other hand, is generally the most compute-intensive stage 
in the pipeline.  C code for the Evaluate function of the example TSP problem is shown 
below. 

distance = 0; 
for (i=0; i<MAX_EVENTS-1; i++) { 
 distance += (abs(x_pos[next[i]] – x_pos[next[i+1]]) + 
  abs(y_pos[next[i]] - y_pos[next[i+1]])); 
} 

The intermediate representation of this Evaluate function is shown in fig. 41. 
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Figure 41:  CDFG of the TSP Evaluate function. 

 
Evaluate functions generally look at every element in a solution at least once and 
compute a score based upon relationships between elements.  In the case of TSP, the 
Manhattan distance must be computed between the current city and the next city to be 
visited for every city in the schedule.  Because the “for” loop representing such a code 
has no loop-carried dependencies, a pipelined architecture, consisting of the loop 
internals, can be derived for efficiently computing such an architecture.  To derive an 
efficient pipeline that can accept new data on every clock cycle, there must be a one-to-
one mapping between each node in the CDFG and a corresponding module in the 
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architecture.  Fig. 42 shows the minimal pipeline architecture for the Evaluate Processor 
of the TSP problem. 

 
Figure 42:  Pipelined architecture of the TSP Evaluate function. 

 
As the general target architecture is a coarse-grained pipelined processor, solutions can 
only be passed between stages at a rate equal to the latency of the slowest stage.  Because 
of this, careful analysis must be taken to ensure that the latency of each stage is reduced 
as much as possible.  A global DSE algorithm, shown in fig. 43, is employed to derive 
this pipelined architecture. 

 
Figure 43:  DSE algorithm for generating a pipelined processor. 

 
As the Copy, Alter, and Adjust Temperature processor architectures (and associated 
latencies) are fixed, the algorithm for exploring possible Alter and Evaluate processors 
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proceeds as follows.  First, a minimal architecture is derived for both the Alter and 
Evaluate processing stages.  For the TSP example, these are the architectures shown in 
figures 40 and 42, respectively.  The latencies of the architectures are determined by 
using Ripple List Scheduling, described in Chapter 4, to schedule CDFG nodes on 
available resources.  The Xilinx Virtex 4 SX35 FPGA resource utilization of the 
architectures, in terms of slices, block RAMs, and DSP48 units is also estimated, using 
the estimation techniques described in Chapter 4. 
 
Once the initial latency and resource utilization for both the Alter and Evaluate stages has 
been computed, the algorithm enters the optimization loop.  The loop consists of two 
steps.  First, the worst-performing stage of the pipeline is identified as the current 
candidate for improvement.  If this stage is the Copy, Accept, or Adjust Temperature 
stage, nothing can be done and the algorithm terminates.  However, if the worst-
performing stage is Alter or Evaluate, DSE is performed in an attempt to reduce 
execution latency through exploitation of available parallelism.  Because of the 
architectural differences between the Alter and Evaluate stages, two different types of 
DSE are employed.  For the simpler Alter Processor, instruction-level parallelism is 
explored.  For the minimal Alter architecture, only one instance of each needed type is 
allowed.  Potential increases in performance can be explored by providing additional 
random number generation, modulo, load, and/or store resources to the architecture.  As 
the number of combinations of different resources is large, a simulated annealing 
algorithm is used to perform this exploration, repeatedly measuring the tradeoff between 
latency and resource utilization.  Note that the goal, according to fig. 43, is not to find the 
fastest implementation, but only an implementation that allows the label of “worst stage” 
to be passed to another stage.  This prevents the introduction of unneeded, costly 
architectural features that wouldn’t improve the pipeline performance. 
 
A DSE technique for the Evaluate Processor is different.  Because of the loop structure 
and pipelined architecture associated with this stage, loop unrolling is performed, rather 
than instruction-level analysis.  The architecture shown in fig. 42 can be duplicated and 
half of the work can be sent to each instance.  This more than doubles the resource 
utilization, as additional glue logic is needed to combine the results of each half at the 
end.  No simulated annealing algorithm is needed in this case, as the number of different 
circuits is small.  It would be infeasible to loop unroll an Evaluate architecture more than 
six or eight times, because of the associated resource utilization and overhead.  Because 
of this, loop unrolling in SATH is capped at eight times. 
 
Once the worst stage has been bettered, the loop repeats until no improvements can be 
made.  The DSE algorithm terminates on one of three conditions.  Either (1) the Copy, 
Accept, or Adjust Temperature processor is the worst performer; (2) the Evaluate or Alter 
stage is the worst performer, but no additional parallelism can be extracted to improve 
performance; or (3) the Evaluate or Alter stage is the worst performer, but there are not 
sufficient resources remaining to allow for additional extraction of parallelism. 
 
One additional item worth mentioning is that the data width of the processor is specified 
by the user, conserving computation time and resources that would be wasted if data 
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widths were restricted to the traditional 16- or 32-bit words.  The user must determine 
what data widths are appropriate for a given application. 
 
5.4 Architecture to VHDL 

Once an architecture has been finalized, it must be translated into hardware.  Hardware 
Description Languages (HDLs) such as Verilog and/or VHDL are commonly used to 
construct both simple and complex hardware modules. The HDLs allow the creation of 
reusable models, but the re-usability of a design does not depend on language features 
alone. It requires design discipline to reach an efficient reusable design. This section 
describes a VHDL generation tool which produces synthesizable VHDL code for an 
entire circuit, based upon an input text file, which contains a description of the functional 
units and the various interconnections between them. 
 
The VHDL generator consists of two primary blocks, (1) The Architecture 
parser/Translator which parses the architecture description file for architectural units like 
adders and multiplexers, and instantiates modules as necessary and (2) The Memory 
Generator which generates memory-based controllers for the select lines of the 
multiplexers present in the circuit. 
 
The hardware specifications mentioned in the architecture description file should be 
sufficient to produce the required hardware in VHDL. The text format should be such 
that it supports all possible combinations of hardware units without any discrepancies.  
The architecture file is capable of giving details of the hardware units and all possible 
interconnections for the VHDL generation tool. Each line of the text file specifies either a 
hardware unit or an interconnection between hardware units.  Consider as an example the 
circuit shown in fig. 44. 

 
Figure 44:  A simple circuit consisting of an adder, a multiplier, and four multiplexers. 

 
The input text file for this architecture looks like this: 
u0 INT_ADD 16 
u1 INT_MUL 16 
u2 MUX 16 2 
u3 MUX 16 2 
u4 MUX 16 2 
u5 MUX 16 2 
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b0 16 u2 3 u0 0 
b1 16 u3 3 u0 1 
b2 16 u4 3 u1 0 
b3 16 u5 3 u1 1 
b4 16 u1 2 u3 1 u4 1 u5 1 out 0 
b5 16 u0 2 u2 0 u3 0 u4 0 u5 0 
b6 16 in 0 u2 1 
b7 2 sel 1 u2 2 
b8 2 sel 2 u3 2 
b9 2 sel 3 u4 2 
b10 2 sel 4 u5 2 
 
In this representation, a “u” denotes a hardware unit in the circuit and a “b” denotes an 
interconnection (bus).  The hardware unit on the first line is defined by a unit number 
(u0), followed by the unit type (INT_ADD) and the data width (16).  For a multiplexer, 
data width and number of inputs must be specified.  A bus is defined by a bus number 
(b0), a data width (16), a source unit (u2) and port (3), and a destination unit (u0) and 
port (0).  A bus must have only one source unit, but may include multiple destination 
units. 
 
When a particular dependency graph is mapped to a particular set of resources, a state 
machine must be created to synchronize the flow of data through the circuit by 
controlling the multiplexer select line.  The VHDL generator takes the values of the 
select lines for each time step from an input text file, generates a memory module, and 
connects the module to the select lines of the multiplexers in the hardware 
implementation. 
 
The input text file for this memory takes the following format: 
mux_8 mux_4 mux_4 
7  1  3 
3  1  0 
1  0  2 
5  1  1 
6  7  8 
 
In this representation, “mux_8” denotes a multiplexer with 8 inputs. The second row 
gives the values for the first clock cycle to the input select line of the multiplexer. The 
next row gives the value of the select line input in the next clock cycle, and so forth. 
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6. RESULTS 

The architectural derivation and performance for the TSP example discussed throughout 
this chapter are now be detailed.  The C code is input to SATH, along with the 
parameters listed in table 18 for the static modules.  16-bit data widths are used for this 
design.  The first step in the algorithm outlined in fig. 33 is to derive a minimal 
architecture for each stage.  The Copy, Accept, and Adjust Temperature stages have a 
fixed architecture with the resource utilization and performance listed in Table 18. 
 

Table 18:   Input parameters for TSP example. 
Parameter Value 
V4SX35 Total Slices 15,360 +192 BRAMs 
Main Controller Slice Usage 177 
Memory Slice Usage 1,035 + 20 BRAMs 
Copy Slice Usage 33 
Accept Slice Usage 1210 + 1 BRAM 
Adj. Temp. Slice Usage 205 + 4 DSP48s 
Copy Latency 101 
Accept Latency 54 
Adj. Temp. Latency 12 

 
The initial architectures for the Alter and Evaluate stages are those shown in fig. 40 and 
42, respectively.  The initial resource usage of the Alter stage is 335 slices with a latency 
of 24 cycles.  The initial Evaluate stage uses 66 slices and 4 BRAMs and has a latency of 
106 cycles. 
 
Now that the initial architecture resources and times have been computed, the algorithm 
enters the improvement loop.  The “worst stage” label currently belongs to the Evaluate 
Processor, as its 106-cycle latency is worse than any that of any other stage.  As this is 
the Evaluate stage, improvement is introduced by unrolling the loop once, resulting in the 
architecture shown in fig. 45. 
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Figure 45:  Dual pipeline architecture (one loop unroll) of the TSP Evaluate function. 

 
Notice that the basic architecture shown in fig. 42 is repeated and an additional adder is 
included to combine the results from the two pipelines.  The latency of this version of the 
architecture is 54 cycles, with a resource utilization of 140 slices and eight BRAMs.  
There is ample room on the FPGA to support this improved functionality. 
 
Once this step is complete, the “worst stage” flag passes from the Evaluate Processor to 
the Copy Processor.  Condition (1) for termination is now valid (the Copy, Accept, or 
Adjust Temperature processor is the worst performer) and thus the architecture is 
complete. 
 
The final step is to determine how the performance of the application-specific processor 
derived by SATH compares with that of the same C code running on both a traditional 
desktop processor and a widely used embedded PowerPC (architecturally similar to those 
flown in space).  The C code specifies an initial temperature of 10,000, a (geometric) 
cooling rate of 0.9999, and a stop threshold of 0.0001, meaning that the simulated 
annealing loop executes 184,198 times.  Table 19 shows a performance comparison 
between the SATH-produced TSP ASIP, the TSP code running on an AMD Athlon 64 
X2 Dual Core Processor running at 2.61 GHz with 1 GB of RAM, and a PowerPC 405 
processor. 
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Table 19:  Speedup comparison for SATH-generated architecture. 
 Clock 

Cycles 
Clock 
Freq. 

Execution 
Time 

Speedup 

PowerPC 
Processor 

1.72x109 100 
MHz 

17.2 s 1.0 

Athlon 
Processor 

1.26x109 2.61 
GHz 

483 ms 35.6 

SATH 
ASIP 

18.6x106 150 
MHz 

124 ms 138.7 

 
From table 19, it can be seen that the custom architecture performs 138 times better than 
the same algorithm running on a PowerPC.  The ASIP also outperforms a desktop PC by 
a factor of 3.9.  The reasons for this speed-up are three-fold.  First, the custom circuit 
employs a four-stage macro pipeline.  This allows for four different solutions to be at 
different stages of processing simultaneously, rather than only managing one solution at a 
time.  Second, the most complex of the processing stages, the evaluate function, has been 
loop-unrolled in the custom implementation to decrease the latency of the pipeline.  
Third, in a conventional processor, up to 50 percent of the computation cycles in typical 
applications can be consumed by load and store instructions, especially in CISC 
architectures which have few internal registers.  Because of the application-specific 
nature of the SATH approach, no unneeded load/store cycles are consumed. 
 
The performance gain for this example is very conservative when compared to gains for a 
more complicated piece of code, such as that described in Chapter 3.   In general, 
additional speedup can be obtained when the Evaluate function consists of a score that is 
the sum of multiple independent parts that can be computed in parallel. 
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APPENDIX A 

 
Resource Usage and Timing Constraints for Basic Building Blocks 
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